

• w 1i 5 %-. ~ r~w w~r £. r-.- - ,o %-; j -

The Design and Evaluation
of a High Performance Salltalk System

BY

David Michael Ungar
B.S. in Electrical Engineering (Washington University, Missouri) 1976

B.S. in Applied Math & Computer Science (Washington University, Missouri) 1976
M.S. (Washington University, Missouri) 1977

DISSERrATION

Subitted in partial satisfaction of the requirements for the degree of

DOCW OF PHISOPHY :*'

in

Computer Science

in the P~

GRA=.IATE DMSION

OF 7M

UNIVERSITY OF CALIOIA, BEREE.-'

, --... ..-..............

.....................

. • '- . .

,*-*

The Design and Evaluation
of a High Performance Smallialk SystemS..

Copyright 0 1986 "a

David M~vichael Ungar

'.'I

d'.st

a..,

,S

The Design and Evaluation of a High Performance Smalltalk System

hD. David Michael Ungar Computer Science

Sponsors: Defense Advanced Research Projecs Agency).A .? L~International Business Machines Corperation

Abstract

The Smallthlk-80TM system makes it possible to write programs quickly by providing

object-oriented programming, incremenal compilation, rn-time type checking,

user-extensible data types and control structures, and an interactive graphical interface.

However, the potential savings in programming effort have been curtailed by poor perfor- 'V

mance in widely available computers or high processor cost Smalltalk-80 systems pose

tough challenges for implementors: dynamic data typing, a high-level instruction set, fre-

quent and expensive procedure calls, and object-oriented storage management.

To solve these problems, a group of researchers at U. C. Berkeley has designed and

built the SOAR (Smalitalk On A RISC) microprocessor. In order to determine the perfor- %

mance of Smalltalk-80 on SOAR and to evaluate the importance of each of the ideas, simu-

lations of five representative benchmarks have been analyzed. The results suggest that:

• Six ideas substantially improve performance: compilation to a low-level iastn.ctio

set, multiple windows of on-chip registem, caching the target of a call instruction in the

instruction itself, byte insert and extract instrucdons, instuctions for arithmetic and

comparison operations on tagged integers, ad our storage management algorithm,

Generation Scavenging. ..

: "*J. -*,

t
__. _________________________ __ _%

2

* Seven features contribute litte to performance: shadow registers to simplify trap 6

uecovery. hardware assistance for garbage collection, vectored trap&, addressable regis-

ters, clearing multiple registers in parallel, conditional trap instructions, and load. and

store-multiple instructions.

* The language-specific hardware in SOAR doubles its performance over a RISC H with

doesame cycle time.

" Generation Scavenging, a storage reclamation algorithm developed by the author, con-

sumes only 3% of the CPU time, in contrast to dhe 9% of comparable Smalltalk-8O sys-

tem.

* Despite a five-to-one handicap in basic cycle time, the NMOS SOAR microprocessor

should run as fast an ECL Dorado minicomputer.

The dissertation reports two results that run counter to conventional wisdom: that a

reduced instruction set computer can offer excellent performance for a system with dynamic

dasta typing such as Smalitalk-8O, and that automatic storage reclamation need not be

time-consuming.

.V,.

%1

s-f,

'%* %

Table of Contents

Table of Combeats i

Table of Filgur .. v

0 Ir
Table of Tables vi %

Cepteir 1: Introduction 6... I

Chapter 2: Previous Work 6
Section 2.1I: Introduction o............ 6

Section 2.1.1: Object-Oriened Programming 7
Section 2.1.2: Shormning the Edit-Compile-Test-Debug Cycle 8
Section 2.1.3: Graphics10
Section 2.1.4: Rapid Response
Section 2.1.5: The Bad News 10 -

Section 2.2: The Smalitalk-0 Exploratory Programming Environment 1I
Section 2.3: Reducing the Cost of EPEs with Software Only 12
Section 2.4: Hardware for Exploratory Programming Environments 14
Section 2.4.1: The RICE Computer ... 14

Section 2.4.2: The Burroughs B5700 and B6700 Computers 15
Section 2.3: Scheme-?9 ... o................ 16 .-- ,4

Section 244: The Symbolics 3600 Lisp Machine 19
Section 2.4.3: Katasm-32 ... 21
Section 2.5: Reduced Insrction Set Computer (RISC) Architectre 242525
,Section 2.5. 1: IBM -801 o... 25 .. i

Section 2.5.3: MIPS .. 28
Section 2.6: Summary .. 297

Chapter 3: The SOAR Architecture .. 30
Section 3. 1: Introduction o... 30

Section 3.2: Type Checking ... 30

Section 3.2.1: Tags Trap Bad Guesses -................................ 31
Section 3.2.2: Conditional Skip Instructions 31
Section 3.2.3: Two-Tone Instructions ... 33
Section 3.2.4: Tagged Immediate Operands ... 33 OPP

Section 3.3: t e e aton .. 34
Section 3.3.1: Reuce InstructionSet .. 35

.k

,.-,. ,

Section 3.3.2: SOAR Interrupts and Traps ... 39 P..

Section 3A: Fast calls 42 J..

Section 3A. 1: Multiple Overlapping On-Chip Register Windows 43
Section 3.4.2: Caching Call Targets In Line....................... 45
Section 3.4.3: Fast Shuffle: One Cycle Calls and Jumps 47

-Section 3.4.4: The Return Instruction: Parallel Register Initialization 48
Section 3.5: Object-Oriented Storage Management ... 50
Section 3.5.1: Automatic Storage Reclamation .. 50

4Section 3.5.2: Activation Records as Objects 53
Section 3.5.3: Virual Memory .. 54

Section 3.6: implementation ... 54
Section 3.6.1: Special Registers .. 54
Section 3.6.2: The SOAR Datapath 56
Section 3.6.3: Pipelining in SOAR 56
Section 3.6.4: Implementation Statistics 58
Section 3.7: Summary 59

Chapter 4: Performance Evaluation of the SOAR Architecture 61
Section 4.1: Introduction 61
' Section 4.2: Overall Performance: SOAR vs Dorado 65

Section 43: Relative Performance of SOAR ... 66
Section 4.4: Evaluating Individual Features ... 67
Section 4.5: Conclusions 72

Chapter 5: Non-Disruptive High Performance Storage Reclamation 74
4 Section 5.1: Introduction 74

Section 5.2: The Relationship Between Virtual Memory and Storage Recla-
mation ... 75

Section 5.3: Personal Computers Must Be Responsive 76
Section 5.4: Virtual Memory for Advanced Personal Computers 76
Section 5.4.1: Segmentation 76
Section 5.4.2: Demand Paging .. 77
Section 5.5: Automatic Storage Reclamation for Advanced Personal Com-

puters ... 78
Section 5.6: Reclaiming Storage by Counting References 79

Section 5.6.1: Immediate Reference Counting .. 79
Section 5.6.2: Deferred Reference Counting .. 81
Section 5.7: Reclaiming Storage by Finding Reachable Objects 82
Section 5.7. 1: M ark and Sweep .. 83

Section 5.7.2: Scavenging Live Objects ... 83":.:
Section 5.8: The Generation Scavenging Automatic Storage Reclamation

Algorithm ... 85
Section 5.8. 1: Overview of Generation Scavenging Algorithm 86
Section 5.8.2: Detailed Descripton of Generation Scavenging 87

~ ~ .Ld -. -.*.d.,.-.-

- - U - Io - -- ,

iN".
V .

Section 5.8.3: Comparing Generation Scavenging to Other Scavenging Algo-
rithms 93

Section 5.9. Performance Evaluation of Generation Scaveging 94
Section 5.9.1: Evaluating Generation Scavenging in Berkeley Smalltalk 94
Section 5.9.2: Evaluating Generation Scavenging on SOAR 96
Section 5.9.2.1: SOAR Scavenge Duration . .96'-

Section 5.9.2.2: SOAR Scavenge Frequency .. 99
Section 5.9.23: Net SOAR Scavenge Overhead ... 100 .'

Section 5.9.2.4: Generation Scavenge Trap Time ... 100
Section 5.9.3: Summary of Generation Scavenging's Performance 101
Section 5.9.4: Performance Evaluation of Direct Addressing an SOAR 102 .

Section 5.9.5: Architectural support for Storage Management 105
Section 5.9.6: Generation Scavenging and Activation Records 106
Section 5.9.7: The Potential Problem of Premature Promotion 108
Section 5.10: Summary of Reclamation Algorithms ... 108 ... ,v

Section 5.11: Conclusions 109

Chapter 6: Scavenging Data with Intermediate Lifetimes 111
Siction 6.1: Introduction
Section 6.2: The Tenuring Threshold III
Section 6.3: Analysis of a Single Scavenged Generation 116
Section 6.4: Analyzing a Middle Generation .. 120

Section 6.5: Controlling the Tenuring Threshold 123
Section 6.6: The Cost of an Offline Reorganization .. 123
Section 6.7: Summary ... 124

Chapter 7: Conclusions ... 125
Section 7.1: Conclusions 125
Section 7.2. Future Work....................................... 127"% P1

Section 7.3: Acknowledgments ... 128 I. .

Bibliography ... 130

Appendix A: Detailed Performance Evaluation of Individual Features............... 140

Section A.1: Inroduc on .. 140
Section A.2: Runtime Type Checking .. 140
Section A.2.1: How Important are the Tagged Integer lnstructions? 142
Section A.2.1.1: Tagged Instruction Frequency ... 142

Section A.2. 1.2: Cost of Omitting Tagged Arithmetic Instructions 142
Section A.2.2: Evaluating the Impact of Adding a Compare-and-Branch In-

struc on ... 153
Section A.2.3: Evaluating Two-Tone Instructions .. 156
Section A.2.4: How Important Are Tagged Immediates? 157

Section A.3: Interpretation .. 157

'-V. ,

i--, .'

Section A.3.1: Evaluating SOAR's Byte Facilities ... 157

Section A.31- Evaluation of the loadc instruction .. 164

Section A.3.3: Barrel Shifter 164

Section A.3.4: Evaluating the importance of Multiply and Divide 164

Section A.3.5: Evaluating the Inl/Outl Skip Condition 168 -
-Section A.3.6: Evaluating SOAR's Conditional Trap Instruction 169
Section A.3.7: One-Cycle Traps 169 ,S
Section A.3.8: Evaluating the Performance Impact of Shadow Registers 173
Section A.3.9: Does SOAR Really Need Vectored Traps? 75

Section A.4: Procedure Calls 175

Section A.4.1: Evaluating SOAR's Register File Organization 175

Section A.4.2: Number of Registers per Window ... 177
Section A.4.3: Analysis of Loadm & Storem 177
Section A.4.4: Performance of Inline Caching .. 185

Section A.4.5: How Fast Does SOAR Shuffle? 192
Section A.4.6: Evaluation of Parallel Register Initialization 192".-
Section A.4.7: Return Options ... 196
Section A.5: Storage Management ... 199

Section A.5.1: Evaluation of the Generation Scavenge Tag Checking
Hardware .. 199

Section A.5.2: Frequency of GS traps ... 201
Section A.53: Evaluating the Pointer to Register Support 201
Section A.6: Implementation 203 .* ,,

Section A.6.1: Register Forwarding 203

Section A.6.2: Memory Accesses .. 204

Appendix B: Raw SOAR Data .. 207

Section B.: Introduction .. 207

Section B.2: Instruction M ix Data .. 208
Section B.3: Execution Profile Data ... 225

.5,. t

,

., . .;... ., , .j ., , . .- , , ... , . .,........., .. ,. , .: ... :.;...,.: ;.,;...,. :... . ., , ,,

Iv
' V

Table of Figures

Figure 1.1: NMOS SOAR chip 3
Figure 2.1: R-2 address word format ... 15
Figure 2.2: Scheme-79 data format .. 17
Figure 2.3: 3600 data formats ... 18,-
Figure 2.4: Microphotograph of RISC I .. 26
Figure 2.5: Microphotograph of RISC I1 .. 27
Figure 3.1: SOAR tagged data types ... 32
Figure 3.2: SOAR's immediate format .. 34
Figure 3.3: LOAR's insruction formats .. 36Figure 3A,: SOAR Program Status Word 41 ;'*,
Figure 3.6: SOAR's register windows 44

Figure 3.7: Logical view of register file ins.ruc..on a . "................ 46
Figure 3.8: Caching the target address in the instruction steam 46
Figure 3.9: Caching the target address in the instruction strean 47"-

Figure 3.10: Fast Shuffle logic .. 49
Figure 3.11: Indirect addressing 51
Figure 3.12: Direct addressing ... 51
Figure 3.13: Generation tag checking in parallel with a store operation 52
Figure 3.14: The SOAR datapath 57
Figure 3.15: Pipelining in SOAR .. 57
Figure 4.1: Steps involved in a SOAR simulation .. 61
Figure 5.1: Virtual memory vs. automatic storage reclamation

Figure 5.2: Standard reference counting ... 80
Figure 5.3: Deferred refernce counting .. 81 .-.-
Figure 5.A: Baker semispaces .. 84 ,--:
Figure 5.5: Generation garbage collection .. 85

Figure 5.6: Generation Scavenging's three areas for new objects 87
Figure 5.7: Bird's eye view of Generation Scavenging ... 88
Figure 5-.8: Predicting the duration of a scavenge 98.

Figure 5.9: Growing with become ... 103

Figure 5.10: Growing without become- _................................... .. .
Figure 5,11: Fast address translation ... 106

Figure 6. 1: Effect of tenure threshold time on amount of data tenured 114
a middle generation....... 121

4- -'-'--.

rip -A k- IN 1. . TVI- - 1 tVT 7 - - -

vi

Table of Tables

Table 1.1: SOAR's most significant features ... 4

Table 2. 1: Some exploratory programming environments I I
Table 2.2: Performance of Smalltalk-80 Compiler Benchmark 12

Table 2.3: R-2 Data tags .. 15
Table 2.4: Burroughs 6700 dam formats .. 16
Table 2.5: Some Scheme-79 opcodes ... 17
Table 2.6: Performance of the Scheme benchmark .. .17
Table 2.7: Some Symbolics 3600 data types .. 19
Table 2.8: Some 3600 opcodes 20

Table 2.9: Comparison of SOAR and Katana-32 22
Table 2.10: The testActivationRetun benchmark .. 22

Table 2.11: TestActivationRetur object code .. 23
Table 3.1: Useful immediate values .. 34

Table 3.2: SOAR Instruction Set ... 37
Table 3.3: Space Penalty of Compilation .. 39
Table 3A: SOAR traps and interrupts-... 41

Table 3.5: Trap reasons by insmction category .. 42

Table 3.6: SOAR special registers .. 55
Table 3.7: Processor Status Word fields 56
Table 3.8: NMOS SOAR characteristics ... 59
Table 3.9: SOAR Architectural Ideas .. 60
Table 4. 1: Comparison of Performance Metrics ... 64

Table 4.2: SOAR Macro-Benchmark results, relative to Dorado 66
Table 4.3: Compiler Benchmark speed for various Smalltalk-80 systems......... 66

Table 4.4: Summary of features and performance impacts 68
Table 4.5: Features in order of performance impact 69
Table 4.6: Trimming the Fat from SOAR 71
Table 5. 1: Traditional decomposition of storage management 75
Table 5.2: Segmentation vs. Paging .. 76
Table 5.3: Paging ... 78

Table 5.4: Reference counting sequence on SOAR ... 82
Table 5.5: Static cost for reference counting on SOAR ... 82
Table 5.6: Generations in Generation Scavenging for BS 86

Table 5.7: Performance of Generation Scavenging in BS 95 .5"...

Table 5.8: Statistics on twelve scavenges simulated for SOAR 97

Table 5.9: Space allocation rate benchmarks on SOAR ... 100

5-Z
120 .. p
' ,i'- . "

- - - - Zr TXrNr r 4 -

vii

Table S.10. Extrapolated vs. Simulated Scavenging on SOAR 100
Table 5.11: G -eneration Scavenge Store trapping overhead in SOAR 101
Table 5.12: Summary of Generation Scavenging's Performance 101
Table S.13: Performance impact of eliminating becomes .. 104
Table 5.14: Static cost of object indirection 105
Table S.15: Summary of reclamation strategies .. 109
Table 6. 1: Results of BS enuring experiment 113
Table 6.2: Summary of tenuuing proposals ... 117
Table 6.3: Quantities to analyze a single generation ... 118
Table 6A: Measurements of an offline reorganization on BS 123
Table A.1: Table of contents for Appendix A .. 141
Table A.2: Frequency of tagged arithmetic instructions. Part I 143
Table A.2: Frequency of tagged arithmetic instructions, Part 2 144
Table A.3: Static Occurrences of Tagged Integer Instructions In System............... 145 .
Table A.4: Frequency of integer tag traps, Part I 146
Table A.4: Frequency of integer tag traps, Part 2 .. 147
Table A.5: Writemound for tagged insrctions, Part I ... 148
Table A.5: Writearound for tagged instructions, Pan 2 149
Table A.6: Cost summary by instruction .. 149

Table A.7: Time cost of omitting tagged integer instructions. Part 10
Table A.7: Time cost of omitting tagged integer insmctions. Pan 2 151
Table A.7: Time cost of omitting tagged integer instructions. Part 3 152

Table A.8: Static Cost of Omitting Tagged Arith Insts in System 152
Table A.9: Upper bound on speedup with compare-and-branch, Part I 154
Table A.9: Upper bound on speedup with compare-and-branch, Part 2 155
Table A. 10: Space savings for compare-and-branch .. 155
Table A.l 1: Projected time cost of manipulating PSW mode bit 156
Table A.12: Space cost of mode bit in PSW .. 156
Table A.13: Dynamic usage and cost of tagged immediate values 158
Table A.14: Raw data for static analysis of tagged immediars 159
Table A.15: Impact of eliminating tagged immediates ... 159
Table A.16: Codes sequences for byte operations, Pan I .. 159
Table A.16: Codes sequences for byte operations, Pan2 .. 160
Table A.17: Dynamic analysis of byte operations, Part I 161
Table A.17: Dynamic analysis of byte operations, Pan 2 162
Table A."17: Dynamic analysis of byte operations, Part 3 .. 163
Table A.i8: Loadc Time Analysis, Part I .. 165
Table A.IS: Loadc Time Analysis, Part 2 .. 166
Table A.19: Performance improvement of adding a barrel shifter 167
Table A.20: Time spent in multiply and divide routines 168
Table A.21: Analysis of InI/OutI condition .. 168
Table A.22: Whtearound for trap instruction ... 169
Table A.23: Time cost of omitting the trap instruction .. 170 % ",.,'

viii

Table A.24: Raw data for stcanal s Sof trap ...Vuui. .. 171

Table AM: Trp fequencies, Part I .. 172

TableA 5: Trap ftequencies, Part 2 .. 173
Table A.26: rme cost of omitting shadow mogisurs---------- 174

Table A.27: Simulating vectored raps 175

Table A.8: Time cost of non-vectored traps, Part 176
Table A.28: Tume cost of non-vectored taps, Part 2 177
Table A29- Analysis of registr windows, Part I .. 178
Table A29: Analysis of registe windows, Pm 2........... 179
Table A.30 Static analysis of register windows........ 8...0. I
Table A.31: Spill aea analysis 180

Table A.32: Loadn'storem execution fequaces, Pan I 181
Table A.32: Loadm/strmm execution frequencies, Part 2 182
Table A.32: Loadm/storem execution frquencies, Part 3 13
Table A.33: Time cost of omitting loadm & storem 184 V
Table A.34: Raw data for static analysis of store multiple 184

Table A.35: Inline cache performance evaluation, Pa 2 186
Table A.35: Inline cache performance evaluation, Pu 2 187
Table A-35: hIline cache perforance evaluation, Pmrt 3. 18
Table A35: Inline Cache performance valuati P 4 189
Table A.36: Code sequences for vaious caches 190

Table A.37:. Relative Performance of various caching schemes 191
Table A.38: Raw data for static analysis of caching 191

Table A.39: Inline cache prologue 191
Table A.40' Space overhead for the various caching schma 192
Table A.41: Net space impact ofcaching schmes .. 192
Table A.42: Frequency of jump and call instuctions ... 193
Table A.43: Cost of omitting fast shuffle 194
Table A.44: Evaluation of parallel nilling, Part I 195
Table A.4: Evaluation of parallel nilling, Pa 2 196

Table A.4S: Static analysis of parallel nilling .. 196
Table A.46: Dynamic frequency of return options, Pa I 197 -

Table A.46: Dynamic frequency of return options, Pam 2 198
Table A.46: Dynamic frequency of return options. Pam 3 ... 199

. Table A.47: Dynamic frequency of tagged store instructions 199
Table A.48: Writearound for tagged stores ... 200
Table A.49: Time cost of omitting GS Tag Trap Store .. 200
Table A.50: Static frequency of tagged stores 200
Table A.5 1: Space cost of omitting tagged stores 201 .,.:-. 2
Table A.52: Dynamic frequency oftagged store GS raps 201

Table A.53: Time cost of eliminating pointer-to-register hardware 203
Table A.54: Time cost for eliminating forwarding .. 203 '44

Table A..5: Instuction vs. Data Fetches. Pan I .. 205

4 .,.'- ,,..,.4!., . I. .+ + ,:,% -. ,' .-. .,.. .-..'. 'p..'.'.'....:.,.,.,,.-..,+ . .,'..+..,,
• -- -- +,. w :1 " " "' " 1' 7 " " % ' % " % " " • " " • ".% " "''%% % +-_' % " "" % %' %"%" %" t_-

Table A.55: Instruction vs. Data Fetches. Part 2 ... 206
- Table B.I: Table of contents for Appendix B .. 207

Table B.2: mst3plus4 Micro-Benchmark Instruction Mix 209
Table B.3: astPopStorenstanceVariable Micro-Benchmark Insrction Mix

.... 209
Table 3.4: ustActivationReturn Micro-Benchmark Instuction Mix 210
Table 3.5: wstClassOrganizer Macro-Benchmark Instuction Mix 211
Table B.6: atCompiler Macro-Benchmark Instruction Mix 214
Table 3.7: stlDecompiler Macro-Benchmark Instruction Mix 217
Table B.8: fastPiintDefinition Macro-Benchmark Instruction Mix 220
Table B.9: testPrintHierarcby Macro-Benchmark Instraction Mix 223
Table B.10: L-st3plus4 Micro-Benchmark Execution Time Profile 226
Table B.1 1: fastActivationReturn Micro-Benchmark Execution Time Profile 226
Table B.1 2: fastClassOrganizer Macro-Benchmark Execution Time Profile 226
Table B.13: sestCompiler Macro-Benchmark Execution Time Profile 227..
Table B.14: wstDecompiler Macro-Benchmark Execution Time Profile 228

Table 3.15: festPrintDefinition Macro-Benchmark Execution Time Profile 229
Table 3.16: tsstPrinHerarchy Macro-Benchmark Execution Time Profile............. 230

,'. oo°-

~.•

O . .

"S
°

I .4

%." % ". .. %.% • U. 'a , . U. N .% . '° " %. N ". U. U. U.% % °." " .",

Chapter 1

Introduction
%

Moome and Junes and ferris wheels
the dizzy dancing way you feel.
As every fairy tale 'comes real
I've looked at SOAR that way... .4.-

I've looked at SOAR from both sides now,
from win and lose, and still somehow
It's SOAR's solutions I recall.
I really don't know SOAR, at all.

"Both Sides Now",
(with apologies to) Joni Mitchell

Computer hardware technology has improved dramatically in the past decade. Corm-

puters now cost less, run faster, and have more space for programs and data. This advance in

hardware has c.ead a demand for larger and more complex software. Unfortunately,

software productivity has not kept pace with hardware technology, leading to a "software

crisis."

The Smallialk-80 system provides an environment that fosters rapid program develop-

ment. The system itself was developed on a large, high-speed. $100,000 personal computer.

and most commercially available microprocessors, that are much more widely available,

cannot run it even half as fast. Regretfully, this lack of widely available high-performance

implementations has severely curtailed the system's acceptance.

It may be possible to surmount this obstacle with a reduced instruction set computer

(RISC) architecture. Such processors have demonstrated excellent cost-performance for

more conventional systems. However, RISCs have an architectural style that runs counter to

the conventional wisdom for exploratory programming environments, such as Smalltalk-80.

Instead of an instruction set that reflects the semantics of the source language, a RISC
* ' ... ,*

' , -,4

-'...
., ...

,%°oV%

2

instuction set reflecs the demands of fast insructon decoding and execution.

We have investigated whether a reduced insruction set computer can provide good

performance for the Smalltalk-0 system. To this end we have analyzed the architecture of

and designed and analyzed the software algorithms for a reduced instucton set microcom-

pour system intended to run the Smaltalk-80 exploratory programming environment at full

speed. This system matches the performance of the fastest Smalltalk-80 implementations to

dam (1986), yet runs at slower clock and memory speeds. The machine is called SOAR, for

Smallalk On A RISC. Our colleagues have built two VLSI implementation of SOAR: an - ,NMOS chip (Figure 1.1) which ha conty rn diagnostcs, and a CMOS chip. In addi-

tion, two MultibusTM-compatible boards have been designed by others to host our chip in a .

Sun 68010 workstation [BID83, Bro84]. Our ultmate goal i to demonsuate SOAR in a run-

ning Smalltalk-80 system. * -

We have also built Berkeley Smalltalk (BS) [UnP83, a Smalltalk interpreter for'the 4

MC6801 0 that runs on the Sun workstation. It has served as a test bed for many of our ideas

and as a source of information about the time-consuming operations required to support the

Smaflint-80 system.

SOAR is a concoction of compiler technology, run-time software, archtecture, and

VLSI circuit design. This dissertation focuses on SOAR's architecture and run-time support

software: what SOAR is, how it was designed, and why it works.

The next chapter describes the previous work in this area. It sum with a brief descrip-

tion of some exploratory programming environments (EPEs), with particular emphasis

on the Smalltaik-80 EPE. It continues with a survey of architectures that suppored

EPEs. Until SOAR. these systems pushed the source-level semantics into the

hardware, sacrificing either simplicity or performance. The last part of this chapter

covers previous reduced instruction set computers. which were all designed for

V..' ". .

i E

4

languages in the Algol family. SOAR is the first reduced instruction set architecture

for an exploratory programming environment.

Chapter 3 enumetates the problems that Smaltalk-80 prsents and the solutions in

SOAR's architecture. The effectiveness of each solution is represented by de time

cost of its omission, based on data gathered from simulations. Table 1.1 summarizes

these results.

Chapter 4 casts a critical eye on SOAR's architecture. Simulation results show that a

400 as SOAR will match the performance of a 70 us ECL minicomputer. It wil also

run at about the same speed as an MC68020 microprocessor with a 60 ns clock, 270 ns

memory, an oo-chip instruction cache, and eight times more rnsistors than SOAR.

To understand SOAR's speed, its architectural features are listed in order of effective-

ness, from successes to failures. These results show that SOAR's language-specific

features approximately double performance.

Chapter 5 delves into object-oriented storage management - a considerable source of

overhead and complexity for many Smallulk-80 systems. For SOAR. we have devised

Table LI: SOAR's most s ficant features.
Smanalltslk-80 performance challenge:

SOAR feature
Type Checking:

tagged integers 26%
two-tone instructions 16%
terprmtaon:

compiling to RISC instructions, -100%
byte inser/exuact instructions 33%

Procedure Calls:
register windows 46% '
in-line cache 33%
fast shuffle 11%

Object Oriented Storage Management:
a direct pointers 20%

generation scavenging 10%

*,.,-

.1*.\..

. -1*..

A -=

Generation Scavenging, a software algorithm that cuts automatic storage reclamation

overhead from 11% to 3 4, reclaims circular structures, and provides an additional

20% performance improvement by eliminating a level of indirection. bn addition to

virtually eliminating the time cost of garbage collection, this algorithm allows us to

remove object-oriented addressing from the architecture.

Chapter 6 furnishes some proposals for coping with medium lifetime objects and an

analytical investigation of them.

Finally, the concluding chapter presents the lessons we have learned from SOAR and

our recommendations for future designs.

The appendices supplement the performance evaluation of SOAR's architecture: N "

Appendix A contains a detailed analysis of each feature's impact on speed and

* memory size, and Appendix B gives our raw performance data.

. :*
-. .,

,-. :-

p'.-...-

i(6

Chapter 2 .- ."

Previous Work

Mi. Introduction

Exploratory programming environments (EPE) are software systems that improve the .

programming process by applying computing power [She3]. In an EPE, a programmer can

quickly produce either a small- to medium- size program or a prototype for a large system. -

The key to this productivity is viewing programming as exploration. In other words, an

implementor explores alternative designs, makin sweeping changes rapidly and immedi-

ately seeing their effects. Exploratory programming environments also help out the pro-

grammer by providing mechanisms to reuse code from libraries, and by integrating tools like

the editor, compiler, and debugger into the enviroment. (We would not count BASIC sys-

m as EPEs.)

ECL and Interlisp were two major early EPEs. ECL types were first-class objects. and

the binding of a type to a variable could be deferred until the first assignment to the variable
• '. F.

[Weg7l,Weg74. Funcdons could test the types of their arguments and act appropriately.

These features made it possible to write programs that could be reused with objects of differ-

ing types, although in a more cumbersome fashion than in current object-oriented languages.

Jnterlisp, a dialect of LISP, facilitated programming by automatically correcting most

typing errors and by providing tools to examine the struure of large programs
% _'. 44

rrei69, Tei72J. When personal workstations and bitmapped graphics became available,

Teielman was inspired by an early Smalluilk system to combine Interlisp with a

user-interface that exploited multiple windows and the mouse [Tei79]. Subsequent -

Smailtalk systems have incorporated some of the programming aids in Interlisp.
.4

,,
.4 o-. . ..• ._ '_._...."_.,.-.., '-

% W , %

.DeTS0,Ti8, Tei83, SZH85, Rov8,l. Smalltalk and Inerlisp minimize die length of pro-.,

4

grams and reduce the time to change and test them. This reduction in information from the .'

programmer, coupled with the elimination of a link-editing or binding phase, places many ,.,.

demands on the execution of the prog~ram, which leads to the issues we address in this.'

dissertation. In contrast, the Cedar system relies on a strongly-typed language which makes ' -

data types and module interfaces explicit. wese features enhanc e ompreensiility and

maininability of large systemsn a llow the compiler to generate more efficient code. It

would Seem that. of te ideas presented herein, ony the storage management algorithms

would be import with respect to an implementation of Crmer. -"-

This research cntras on one EPE in particular, the Sm ltalk-80 system Although

oter EPEs share some of it features, we will henceforth eoncentrate on Smalitalk. Over a

decade ago, a small band of advendurls at Xerox PARC set out to explore ow computa- .

ional rsources could help people master t e programming process. ane Smantak-80 sys-

lem [GoRS3.GolSl.Gol84.Kra$3] is their latest achievement. We have taken a simplearchitecture an d a few featu em, resulting in a simple machine whose improved

cost-peiormance could make the Smallalk-80 system avAilable to many mom people.

s.o. Object-Oriented Prograi sing w h h ta

V.5

The Smalltadk systems introduced object-oriented programming, which provides
absactios for s-ucturing programs and reduces the code that must be writen.

"sg.m

Object-oriented programming in Smalltalk-80 has three important aspects:

* Fst thre are no type declarations in Smalltalk-80. Instead information is kept at run-

time to resolve a variable's type. A variable may take on many different types.

'S. " " " . . """ " - . . € "". ; : " ." : " :* :" . -" -" . , "." , "•"."."." . " "" r " "- "-"--" "

-.--.

Second, a Smalltalk-SO procedure call uses the type of the first argum ent to choose its

target routine. Th first parameter of every subroutine has an associated type, and the

subroutines are grouped accordingly. When a Sinallkalk-SO system peuforms a call, it

finds the routine associated with the type of the call's first argument. As mentioned

above, the type is not known in advance, so this search must occur at runtime. This

overloaded call also makes it easier to reuse an old routine with a new type. When the

old routine uses the new type, operations defined on that type will be chosen at

run-time. It is not evea necessary to recompile the old routine. In other words, new

types can be added gracefully to the system.

Finally, types can be defined as extensions of other types. To define a new type that is

similar to an old one, the programmer can give the differences, and the new type will

inherit the format and functions from the old one.

The Smalltalk-80 implementation has two more features that help its programmers.

For one thing, it runs on a computer dedicated to one user. Freedom from competing f.

demands lets die system provide uniform, fast response time in order to enhance produc-

tvity. Ti other featurc is automatic storage reclamation. Programmers of early

fist-manipulation system found it cumbersome to free unused storage explicitly. Instead,

they found ways to let the run-time support software reclaim unused storage automatically

[McC60, Col6O]. Automatic reclamation provided a very important benefit: eliminating

errors caused by releasing storage too early. Despite its advantages, the high overhead asso- .-. ' - -

ciated with automatic storage reclamation prevented widespread acceptance. This barrier

has been removed by faster algorithms.

2.1.2. Shortening the Edit-Compile-Test-Debug Cycle

In addition to reducing editing time, the Smalltalk-80 system reduces the time for the

compile. test. and debug phases of software construction. Conventional systems require a

-:7~

.--?.-...,-...,.---.,.-w*-..... .- -- .-..

- - -_-,

9

lot of time to rebuild a large program after a change. The Smalltalk-80 system uses incre-

mental compilation and dynamic linking to integrate changes rapidly.

* Incremntal compilation. To reduce the work needed to incorporat a small textual

change, a system must avoid recompiling the whole program. Inormation in symbol

tables or parse tlees must be maintained andreused for the portion that did not change.

Most systems supply separate compilation on a module-by-module basis. Recompila-

don frequently takes ton seconds to a minute. The Smalltalk-80 system provides a .-.

much finer grain of incremental compilation and much shorter response times. Magpie

is a similar EPE for PASCAL (DMS84J. It compiles after every keystroke. In this ,I

system, there is rarely a perceptible delay to rebuild a program.

Dynamic linking. In a system that does all linking before execution starts, the pro-

grammer must wait a while longer after recompiling a module while the system relinks

the module to the program's other modules. The result is that a simple change to a

large program takes a long ime. In systems like Smalltak-80, modules are not stati-

cally bound together. Instead they are connected as needed, dynamically. Dynamic

linking is essential to maintain short response time for changing large programs. .'

Source-level debugging. Although most programmers construct their programs in a

I high-level language, early systems forced them to debug their programs in terms of

machine instructions and machine dat types. Modern systems make debugging easier

by presenting breakpoints, errors, and variables in terms of the HLL source code

instead of the object code. For instance, they show where execution is suspended in
-6)

the source code and can execute a line at a time. In such systems, the programmer can

debug much faster because he has less work to do. EPEs go even further. When

debugging, the programmer can try the effect of a new statement by merely typing it

in. The Smalltalk-80 system will instantly compile and execute the statement in the

context of the suspended program. When the error is located, it can be corrected
p. . .,

.% .*

." 5'

10

without terminating the suspended program. It can be mstarted, or single-stepped from

the point of the error. With a system like Smalltalk-80, one can debug a program into

existence.

it-. ..

The Smalltalk-80 system represents a compromise between compiled and interpreted % .

systems. Progranuners can produce more software when they can incorporate and test
.. .. ".."

changes faster and when they can take advantage of a powerful debugger. Most such sys-

ois are interpreters. saving much state and interpreting it at runtime. Of course, the exuta

work involved imposes severe performance penalties. To run the fastest, a program must do ,-,

the least work; compilers attempt to determine as much as possible about a program's

behavior statically leaving a minimum of work for runtime. The Smalltalk-80 system is a

happy medium. Enough information is compiled out to make good performance possible, -.

but enough is left in to make it easier to program.

A -

2.1.3. Graphics

The Smalltalk-80 system takes advantage of bitmap display hardware and pointing

devices to support multiple windows, selecting by pointing, pop-up menus, even diagrams of

program saucture [ShM83]. This follows the adage that "A picture is worth a thousand

words."

2.1.4 Rapid Response

High productivity demands consistent, split-second response time [Tha81]. So, most

EPEs we know of use dedicated personal, high-performance minicomputers.

2.1.. The Bad News ,,, :

Why do exploratory computing environments remain largely experimental? They

suffer from poor cost-performance. For example. each of the EPEs in Table 2.1 requires a

powerful and costly minicomputer for each programmer. The research in this dissertation is

,a- _ ._'.'

__-... ...,.... : - . -.......-.... -., :.......-,...- ...-....-.,.... -..-.....,'. ...,-

an attempt to reduce the hardware cost for die Smalltalk-80 exploratory programmg

2fThe Smhlltalk-a0 Exploratory Programming Environmentg

In 1972 Alan Kay started a group at Xerox PARC to explore how computational

resources could help people master the programming process. The Smafltalk-80 system

[GoR83, Gol81, Go184, Kra83] is the culmination of their effors. A dedicated. powerful per-

sonal computer hosts this innovative system. Multiple on-screen windows, pop-up menus,

and pointing distinguish Smalltalk-80's user interface from older systems. The Smalltalk-80

language has replaced operating on variables with sending messages to objects, and its

run-time system automatically reclaims storage and finds space to allocate new objects.

Smalltalk-80's greatest srengths and its worst weaknesses result from the same design

decision, dynamic binding of types to variables and subroutines to call insructions.

Smalltalk-80's designers have eliminated type declarations from the language, thereby mak-

ing it easier to write and modify programs.

On the other hand, computing a variable's type or a call's destination on-the-fly slows ,

down the system, or increases the cost for a machine with adequate performance. The only

computer that has demonstrated universally acceptable Smailtalk-80 performance is the

Xerox Dorado [LPM8 1, Pie83, Deu83a]. This 70 ns ECL minicomputer costs $120,000 (in

1985) and dissipates over 2 kilowatts, requiring an air-conditioned room. Small lk-80 sys-

tems that run on more conventional, cheaper computers, including our own Berkeley

Table 2.1: Some exploratory programming environments.
Environment Language Developed at Host CPU Cost
InterLisp-D lnterLisp Xerox PARC Dorado $120k
Cedar Cedar-Mesa Xerox PARC Dorado $120k
Smalltalk-80 Smalltalk-80 Xerox PARC Dorado $ 120k
Lisp Machine ZetaLisp Symbolics Symbolics 3600 $80k (

(12

Smalltalk, suffer lackluster performance. For example. Table 2.2 shows the performance of

die official Smalltaik-80 compiler benchmark for several implementations, including a simu- p.

lation of our machine. (See Section 4.1 for a description of the benchmarks.)

123. Reducing the Cost of EPEs with Software Only

How can we make Exploratory Programming Enviro.nments mome cost effective and

more generally available? One way is with clever software on a cheap, convemtional '..

machine. L Peter Deutsch and Alan Schiffman have built such a Smalltalk-80 system for a

10 Mhz Motorola 68010 microprocssr [DES84], a conventional (and successful) general

purpose essor. The 68010's microcoded control unit implements a 32-bit,

register-baned instruction set that runs at memory speed. Jumps pay a penalty to refill the

instucton pipeline, and calls must contend with register saving and restoring overhead. A

large flat address space helps support systems like Smailalk and Lisp that require large, sin-

$It address spacesLS

Although the fastest 68010 instructon is 6 times slower than a Dorado microinstruc-

don, the Deutsch-Schiffman system runs Smallalk-80 only thre times slower.* The

Table 2.2: Performaince of Smailtalk4O Compiler Benchmrk.
Dorado Dolphin VAX-I 1/780 68 SOAR

Machi (Xerox) (Xerox) (DEC) (Xerox) (UCB)

Year of introduction 1978 1978 1978 1984 1985
Technology ECL "7L TL NMOS NMOS

Cycle time 67 ns lons 200 ns 400 ns 400 ns
SVirtu mchine microcode assembler -

i implementation _ __

Object pointer size 16 bits 32 bits
Relative Performance: Dorado. 100%, larger is faster
--- (100%) 11% 8% 40% 103%

*71w sya. ha sour bem paurd o fb MCWIO0. a a SUN 3 wortstuo. Thus procassor maa 16.67 WM. with
wi ISSSISI. The fIaa possbler euctiom in am clock cycl r 180 w. The momy sysitm cam debver a
32-is word i 270 m. So, the cycle ti for a siple iusmUo would seem to rmue from iO ma to 270 a depadg on, ,
whetder lb Nosmecto i cached. On diis Imche, die Xe 6900 SmalJalk sywma cam exacuw the compilr beaucmark
80 * fn mna Dwaido.

%. .. ,

.. .,m d*

13

efficiency improvement over the Dorado arises from the following software techniques:

- Dynamic traslarion. Instead of being interpreted, Smantalk-80 subroutines are
. i" ""1

translated into 68010 instructions when first called. The translated versions art ,..,

directly executed and then cached for later use. "pA,

* In-line caching. Each procedure call requires a table lookup to find its target subrou-

tine. Even though a call could invoke many possible targets, there is a simple way to

predict the target of any given call. 95% of the time, a call will invoke the same rou- NOVO

tine it did the last time [DAmbg3j. Thus, after performing a lookup for a call insruc-'I p.'._'

don, the Deutsch-Schiffman system overwrites the call to the lookup routine with a
.1%

call to the uget routine. The next time the call is execura control bypasses the

lookup routine and goes directly to the previous target Of course, the other 5% of the N

time, the target has changed. So, each subroutine starts with a check to cause another

lookup if necessary. In this manner. the targets for subroutine calls ae cached in the
N711;

instruction struam, eliminating costly lookups. :*

* Volatile contems. The Smalltalk-80 language specifies that its activation records can

be manipulated like any other objects in the system. Although this simplifies the

debugger, it creates more work for calls and returns and thus hurts system peifor- _

mance. For example, when saving the program counter, a call must first convert it

from a pointer into a tagged integer offset, Deutsch and Schiffman have minimized the

overhead by providing multiple representations for activation records and automatic %;

conversion between them. In this manner, they defer expensive conversions as long as k_%

possible. Since very few activation records are ever examined by the debugger, most

of these conversions are never performed at all, significantly reducing subroutine call
e

overhead.

A

...,
: .- 'p -,-.-,': L.,, '-. '.?.-'%:..::.-". ."." ", .: -' -,-;".. .'. .- :.:- : "'"''-,

"
"," ,..._. ; .N ' ".. .. " : .

"S-. - ,: - .I, t'...''....._,_''' P". .- a,-. ",-#,.'j',.,' % ''% 'X .. ' "%

,,I;F, r V:0-,77f TC 0C1; V., I%

t 14

• Dentsch-Bobrow deferred reference-couting. In addtion to activation records a

Smalltalk-S0 system allocates a new object every 80 instructions on aveage lUngS4].

This heavy burden can make automatic storage reclamation a systm bottleneck. In

this systm, Deutsch-Dobrow deferred referece-counting [DeB76] reduces storage

reclamation overhead to 9% of the total CPU time.

24, Hardware for Exploratory Programming Environments ,

In addition to innovative software, special-purpose hardware may further reduce the

cost of an EPE. In the pasf, researchers have closely coupled the source language semantics

to the hardware-supponed operations and data types. Although memory-efficient, this

approach has usually resulted in increased cost and poor performance. This section exam-

ines five computers: the RICE computer, which introduced tags. the Burroughs 5700,

Sclheme-79, and Symbolics 3600 machines designed for specific high level languages, and

die Katena-32, another mirpocso for the Smailtalk-SO system.

2.4.1. The RICE Computer

The R-2 computer developed at Rice University was a tagged architecture with sub-

script address calculation and bounds-checking hardware [-eu72]:

A wide, 62-bit word size allowed an array's length and initial index to accompany its

base address.

* A rich variety of numeric types, control words, and address words were encoded in the

R-2's four tag bis. (See Table 2.3.)

The R-2 desin simplified its compilers. provided a measure of protection for the operating

systm. and reduced the amount of data needed by the debugger. Although it did not max-

imize spe , ths design fostered sharing among many users in a common address space. To

our knowledge, the RICE computer was the first to add tags to data.

*-%h..

i *'V

1112.; 4 Ill 4 IY 14 14 1D

Length B ase
Initalm Indexentm in Core

D~ina tags

Software tap (tace bits)

Wm lockout

Parity

Figure 2J: R 2 address word formw. The length and index of the firs element accompany
te ban addrss.

Table 2.3: R-2 Data tags.
Tag Meaning
0000 mixed or untagged
0001 (unassigned)
0010 (unassigned)
0011 (unassigned)
0100 real, single precision
0101 54-bit binary suing or integer
0110 double precision
0111 complex
1000 undefined for normal operations
1001 partition word

'I, ~1010 relative control word
1011 absolute control word
1100 relative address, unchained
1101 absolute address, unchained
1110 relative address, chained
1111 absolute address, chained -,

2.4.2. The Burroughs B5700 and B6700 Computers

In the sixties and early seventies, the Burroughs Corporation introduced the first com-

'P' mercial computers dedicated to a high-level-language, their 5000 and 6000 series [Org73] .'

tagged. stck-oriented architemre was chosen to host an Algol superSeL Memory was at

a premium in those days, and its segmented virtual memory system enabled the B5700 to ;)b

0 . o . . • %.0 • % % . ..%. .. % ,,,- -..... , % % ,% ,%,.,,% % % ,- -. ,,.-, . -, .-. ., .%h

16 V

operae with only 32,000 words of main memory. Paradoxically, adding 3 tog bins to each #

45-bit memory word saved memory by reducing the number of words needed. For example,

tags on data reduced the sina of instructions by permitting a single add opcode to serve all

types of numbers. Tap also helped with managing the stock and accessing damtarctures.

Table 2.4 illustrates the 6700's data formats. A substantial quantity of hardware in these

manchines was devoted to supporting stack-based, block structured computation. The 5700

and 6700 proved that commercial computers could be designed for a high level language.

L.4.3. Scbeme-79

Scheme-79, an early high-level language microprocessor, directly executed a dialect

of Lisp [SHJS 1].

* Each 32-bit word contained one bit to aid garbage collection, seven bits of type and

opcode information, and a 24-bit pointer. (See Figure 2.2.)

0 An innvative and interesting design, Scheme'79 pushed Lisp abstractions to a low

lvel to attain the power of interpreted execution at lower cost. For example, many

* opcodes were needed to maintain the correspondence with source-level Lisp

Table 2.4:- Burr.hs 6700 data formats.
Cl osf Operand

TIM of Word Tag
numbers

sgle-precision 000
double-precision (2 words) 010 Y

dtscriptor words
segment Oi1
data 101

control words A
indirect reference word 001
stuffed indirect reference word 001
mark stack control word 011
return control word 011
top-f-stack control word 011
program control word 111

-* k.

17

OC tpe daum

111 7 24 1evIW
1: 7 24 C& I

0C type daum

Figure 22: Sckmme.79 d fomrma. Two of these woids nake up a list node.

primitves. (See Table 2..) As a result, microcode. microsubrounnes, and nanocode

wm used to fit the conrol circuitry on-chip. Scheme'79 had good performance com-

pard to other interpretr but not when compared to compiled Lisp. This is shown in

Table 2.6, from [Pon83a]. These dam suggest that a machine that is specialized for a

paricular system must also exploit compilation to attain high performance.

Instead of lineaw sequence of instructions, Scheme-79 used a Lisp binary uee for pro-

gram conrol, each node consisting of two words. T- first word was the instrucuon

and the second was a pointer to the next insrcton. The instruction format is the same

Table LS: Some Scbeme-79 opcodes.

APPLY
CAR
CDR I

CLOSURE :

COND %

CONS
EQ

PIRS-ARG
GLOBAL '

LOCAL .5

NIL
PROCEDURE
SEQUENCE

Table 26: Performance of the Scheme benchmark. I
1A1l/780OFrn= interpreter 2 2min

Scheme chip (projected) I min
VAX 11/780 Franz, complied (normal funcall) 8.7 sec
VAX 11/780 Franz, compiled (local funcall) 3 sec

I~ 1-74****~*;'*~% %

as the data forma shown above. This non-sequential forma prohibits instruction pre-

fetching and so reduces the speed of macro-instructions.

* ABl dama including the soack coninurs. were kept in memory aslists. in addition te

* memory reference overhead, this approach wasted time to, reclaim list space for tem.-

porary values. Even with a microcoded link-reversal mark-and-sweep, garbage collec-

tor [ScW67. StaSO], Sunsman estimated that Scheme would spend 80% of its time in

the storage allocator.

The Scheme-79 chip was fabricated in the MPC-79 Multi-University Multiproject

C. atip-Set at X - 2.5 pi (5 micran line width). It was 7500 pa long and 5900 pi wide. One of

die fabricated chips ran small progriams and reclaimed storage. Fibonacci(20) took 100 mil

lion cycles (0 1600 as) with a 64KW memory that was half-full. Over two-thirds of those

cycles were spent collecting garbage. Scheme-SI is a successor to Scheme-79 with more

aggrssive silicon technology ().-1.5, 12,OOOP w x 12,000ps h) [D0H82]. Its designers esti-

* man: Scheme-SI would run five tines faster than Scbeme-79. This would still run t

Scheme benchmark more slowly than compiled Franz Lisp on a VAX 11/780.

12.2 32

data tyeimmediate number
CDR code ,%*

2 6 28

damatp one

Figure 2.3: 3600) data formats. There are two formats -one for numbers and another for
Pointers-

C., .,~ I

-WIXrJ P- n- I- T. X-0 -I ..WV 4 . -, - W. Vi V,- C. W I P.

19

4.e~

2.44 The Symbolics 3600 Lisp Machine .4.

The Symbolics 3600 is a TFL personal minicomputer for Lisp [Roa83, Moo85]. It has

good performance, substantial complexity, and high cost - $80,000 for each programmer.

Each word contains 36 bits: a two bit field for list compression (CDR-coding), a type

field of two bits for numbers or six bits for pointers, and either a 32-bit data field or a

28-bit pointer foild. This provides a rich selection of hardware-supported types. Table

2.7 lists some of the 34 types implemented by the 3600's hardware and firmware.

" Each 3600 insmction is 17 bits long, with nine bits of opcode and eight for the

operand/address. Then an seven instruction formats. Table 2.8 gives a sampling of

the opcodes.

" Some of the 3600's instucions perform complex operations. Instructions such as

multiply, divid, and store-array-lea may rake many cycles to complete. These

iaructions must also handle many different data-types. These factors combine to

require almost a million bits of control store, about twice that of a VAX-I 1/780. -..

• Tags in the 3600 ninimize the cost of dynamic typing. In coaventonal systems, a

datum's type must be determined before it is used. A 3600 instruction assumes a

Table 2.7: Somne Symbolics 3600 data types.
ARRAY

iBIGNUM

CLOSURE
COMPILED CODE

.4. COMPLEX NUMBER , -.

* COROU7INE
EX71ENDED FLOATING POINT NUMBER

FLAVOR.UlSTANCE
FLOAT

.LEXICAL CLOSURE
LIST
NIL

RATIONAL NUMBER
SYMBOL (4

.4-""

N g:'::

20

Table 2.8: Someo 36000 @1~e.
aegsouy Examples

Data movement push-immed
pop-n-save
movent-local

Instance variable push-instance-variable
movem-instance-vaniable
instance-it

Function calling calUO0-teck

funcall- 1-stack
Bindng nd fncton etry take-n-args

take-n-optional-args-rest
Function reu muandstack

Quickfucinclan eua pj

Branch branch
branch-tum-else-pop

Catch catch-open-stack
unwind-protect-open

Prediateseq
not
flap
floatp
symboip

atuayp
OP.Arithmetic add-stack

subtract-stack
multiply-stack
quotient-stack
remainder-stack
rat-stack

List and symbol car
cdr
rplaca
set
symeval
property-cell-location
package-ceil-location 1

Arry mray-leader

Subprmaavestore-array-leader
Subpriitivehalt

9bmultipiy-double
%datE-type
9bpointer
%stack-group-switch
16gc-tag-ruad

21

likely type and proceeds, while simultaneously verifying that assumption against the

tg. If the asstmption is false, the 3600 aborts the current microcode sequence and

sum executng microcode for the required operation. This saves time for operations

an the most common ta.

An area-based automatic storage reclamation algorithm reclaims space by incremen-

tally copying surviving objects. The Symbolics machine has paged virtual memory

and its paging hardware aids storage reclamation by recording which pages of per-

mauet objects contain references to famporazy objects. Area-based copying reclama-

non is very efficient (See the chapter on automatic storage reclamation.)

The 3600's microcycle time varies between 180 and 250 ns, making it one of the

fastest commercially available personal computers for an exploratory programming

environment [Pon83b].

Although providing good performance, the 3600's $80,000 price tag rmfects the cost of seek-

ing hardware solutions to system problems.

2.4.. Kata.-32 -

Midway through the SOAR project, we learned of the Katana-32, also known as

Sword-32, an independent attempt by a group of researchers at Tokyo University, to build a

fast VLSI Smalltalk-S0 microcomputer [SKA84,Suz84]. Unlike our RISC approach. they

have continued with the traditional complex instuction set (CISC) style of computer archi-

ecture. Table 2.9 compares the Katana and SOAR designs. Katana's large microstoe. van-

able length bytecoded insuctions. and 160 registers. suggest that it is basically a Dorado on

a chip. Table 2.10 shows the benchmark used for their performance predictions, with Table

2.11 showing the resulting object code for both machines. . ,

j The designers of Katans-32 are relying on aggressive VLSI technology for their perfor-

mance projections. Their chip will have five times more ransistors than SOAR, and have

-.h-r..<

22

p.-..b

Table 2.9: Comp arisn of SOAR aad Katana-32.
__________ SOAR Katana-32

architctur RUC bywcode interpretr
number of instructions 20 -46, ,
insmrction formats 3 -9
inswm tion legth I word I -3 byms
dam path width 32bit 32bits
microstore none 4Kw x 4S bis

rei80ns 160
cycle tme 510 nst 125 ust
number of mransisors 35,700 -200,000

wst4crivarionReturn micro-benchmark.

crecursion f1 72 bym~s 21 bytes
avg cycles p recurioj 141 49

I Table 2.10: The testActIvationReturn benchmark. .
ESa Mtalk-SO Pidgi C "

I ucr. ti mcur(tl){
dt- 0iffrue:[seO. if (tI aO) rettuD
self recur tl -1. recur(tl - 1) I

"slfrecur tI -I recur(tl - 1)

.., "5, -.

-2..-:

'. "'

:ii

This m mcm-lonmhk nam a fair covpaum. However m fatr a we w. ats de oamly Kamm performance .

5gw. asalsbie.
+ 12. with a bmor cofpiur.
* 510 . as tw meard cycle Uim of walking NMOS SOAR chtps. iludm" 110 s for dhe mexacwd juui and cal

delay PMMb. P=m85a). (See Sectb. 3.4.3) 125 w is.M projecwd cycle tme for Kau= ISM..

%.

23

Table 2.11: TestActivationReturn object code.
SOAR Machine Code cycles

%IOBdc (rreceiver)classOffset T6 2
S %oad (rtrenmAddrcss)0, r5 2
strapi ner5, r6/0 cache miss / 1
skipeq rt], 0 1.2
jumpt .+2t it
,emw r retumAddnss. 1 2
sub rtl, 1, r6 1
%addt r6, O,1 5/* synthesized move */t it
Iadd r self, 0, r6/* synthesized move / !

1call r1ur
cselector>
sub rtl,l,6 1
%addt r6, 0, r5 /* synthesized move */t It
lIadd rself, 0, r6 /* synthesized move 1 "

%add r6, 0, r retVal I
Iurp2 geu rntval, CONTEXT TAG I
femw r nmAd~resw 1 2-"

lend72 byts,rmin time 9 cycles ''%

n time 19 cycles
• averse . 14 cycles., "

Katana-32 Machine Code [SKA84, Stz84] cycles " "...

pushTemp: 0 3
pushConsmnc 0 2
send: 3jumpFalse: 10 3 -6 "-

rendrulf 4t,.
pLshSelf 2
pushTemp: 0 3
pusbConsmnt 1 2
end: - 4

send: iwfu 21

iushTemp: 0 3 ,:-.
pushConstant 1 2 ,...
send: - 4 ""-
nd: recur 21 ,,.z

rm[UTop 4 +
Slength 2vbte -;l

21 bytes
i rmin rimle 15 cycles -

max time 93 cycles
average time 49 cycles

t Then .mcuom cosiM be eblima byr a bmwu complh?.

I.,I

p--'.

J €," , d " . " . " . "," . . . # . e . " . e . " . " . - e . . . ' - .' ' ' " " ' ' ' ' " "

24

twice as many register on the datapath, yet a cycle will only take one third the time. We

% believe that could SOAR could also run considerably faster if implemented in that technol- .

opy.

2.5. Reduced Instruction Set Computer (RISC) Architecture

The machines described above are more elaborate and expensive than conventional

computers. We need a machine that has high performance at low cost. One recent style of

computer architecture, the reduced instruction set computer (RISC), claims to meet those

demands for traditional programming systems [PaD8O,PaS8I,PaS82]. In this style there is

a much closer coupling between architecture and implementation.

To design a RISC,

"" sia with a fast and simple register-based instruction set similar to microcode in other

- machines, then

, identify the time-consuming operations in typical programs, and finally
p.' A -

* take the hardware saved by simplifying insncon execution and dedicate it to speeding

up the time consuming operations. '

.., RISC designs contrast with traditional high-level language computers that rely on long

microcode sequences to provide complex functions "in hardware." Instead of microcode,

RISC systems rely on software to provide complicated operations. Of course, software con- -

sumes memory, but we would gladly add memory to gain speed. The rest of this section

touches on several important RISCs: IBM's 801, Berkeley's RISC I and II, and Stanford's

theq
MIPS. These reduced instruction set computers all point in the same direction, more perfor-

mance with less hardware.

- %p

%....'..'. . . " ' ... -. ""..".' .' .'. ". -. .. -.. "" .. -... . '%.'-.'... .-.. ' " "-.-.'- '. . .- .", . .'-...'-.'-.'.. .. ' .' .'..'..'o....'- ." .' . .

*.. '. *0
25-

23.1. IBM4801

The IBM-801 computer pioneered many RISC concepts [Rad82], including a simple

load/store instruction set and the coupling of architecture design with compiler technology.

A sophisticated graph-coloring algorithm enabled its compiler to optimize register allocation

over a fairly small register file lCha82]. Constructed in ECL, the 801 attained excellent per-

formance. Although this work was not published immediately, it pioneered the benefits of a

reduced insruction seL

2.. R ISC I and .* -1

The RISC I and H microprocessor chips were designed and built at Berkeley to yield

high performance for the C/Unix environment [KSP83]. Figures 2.4 and 2.5 are photo-

graphs of the RISC I and IL respectively.

* True to their names, these reduced instruction set computers have about two dozen

instructions in their instruction sets, and are distinguished by the simplicity and com-

pectness of their control circuitry - 5% to 10% of chip area. This contrasts with 50%

for more typical designs. The minimal and simple control circuity shortens the design

time as well as instruction cycle time.

These systems were designed for existing compiler technology. In this technology,

subroutine calls are slow because they save and restore registers. RISC I and U speed

up subroutine calls with hardware that eliminates this source of overhead. To accom-

plish this, they spend the area saved by simplifying the control circuitry on a large

on-chip register file, organized as overlapping windows.

In addition to providing good performance, reduced instruction set computers are easier to

design. RISC I met the goal of functional correcmess on first silicon, and RISC H ran at full

speed on first silicon, outperforming superminicomputers using the same compiler technol-

ogy. A more complex architecture would have jeopardized these goals.

2J3. MIPS

MIPS stends for Microprocessor without Inerlocked Pipelined Stages
4. .

(WP13, HM]32). It refines reduced intuction sm architecture by eliminating pipeline inter-

lack hardwae. Instead the MiPS project has developed effective algondtms to schedule

instctiois for the pipeline staticaly. The results are promising:

Instruction dependencies are handled with a one-stage delayed branch. (The instuc-

tion following a branch is always executed.) The MIPS reorganires fills 70% of the

slots afor delayed branch instructions. Since these branches account for 20% of all

insmcuwons, and since MIPS has one delay slot per branch instruction, there are 20 .,. .

delay slots for every 100 insnations. Filling 70% of them leaves only 6 wasted slots

per 100 instructions, which is only 6% slower than the (probably unrealizable)

optimum.

Data dependencies are also handled by reordering instrwtions. The performance of

code generated this way is within 3% of the code that could be run with hardware pipe-
4;a

line interlocks. .

* Another finding of the MIPS project is that a word-addressed machine can run most

'5.programs faster than one with byte addressing. The problem with byte addressing is

that the extra circuity required can slow down word references. -"

*,MIPS demonstrates impressive performance: a simulated MIPS CPU with a 4MHz

clock runs benchmarks about five times faster than a 8Mhz 68010.

a.

The MIPS project blends simpler control circuitry with more sophisticated optimizing corn-

p. piler technology to achieve more performance with less hardware.

.4.

, ,
%,

%* '~

.c..'

29

2.6. Swnmary

The Smantalk-O system provides a programming mnvirountem that boosts a

rogu e'w productivity. It does so by exploiting the object metaphor so shorte the

edit-compile-est-debug cycle. However Smalltsalk-80, along with other exploratory pro,--

grsmming environmenus, runs slowly on conventional hardware.

We have designed a reduced instruction se computer, and added features to it to sup-

part Smailalk. In doing so, we have followed in the fosps of other architectmre projects:

The RICE computer pioneered us, as a means to control data manipulations.

The Burroughs B5700 and 96700 computers supported Algol with tagged data,

descriptors, and a tailored instucuton set.

* Scheme-79 was the first attempt to marry Mead-Conway VLSI design with an inwrpre-

tive language. I.
The Symbolics 3600 Lisp Machine is a commercially successful computer dedicated to

a specific exploratory programming environment.

S IBM-801 revived interest in simple computers and highly optimizing compilers for .

nm-floating point applications.

* RISC I and I at Berkeley taught us much about instuction sets, register windows, and

data path design.

7U.'he MIPS machine at Stanford encouraged us to forego bye addressing.

SOAR combines a simple, RISC architecture, with enough tagging to support the corn-

mon cases. In the following chapters. we describe SOAR's architecture, assess the worth of

each architectural feature, explain important algorithms in its system software, and propose

designs for future systems.

!& q 4

- . . .,j .' 5. .

30

Chapter 3

The SOAR Architecture

3.1. Iutreim ctiom , .iI.,'

This chapter describes the SOAR architacure, contrasing SOAR with its predecessor.,'

RISC IL Most innovations in SOAR compenst for soures of overhead in Smulluk-80

systems: rmn-time type checking. virtual machine iterpremmion, elaborate and frequent pro-

codure calls, and maintmnig many small, dynamic data srnctures. We conclude with an

overview of the implementation, detailed in Pendleton's doctoral dissetaon [Pong~bi. A

summary of this chapter has been previously published [UDFS4]. A more detailed architec-

tural description appears in (SKFI5J.

Two figures-of-m ntr accompany each feature: excuon ime and memory space. We

puge a feature's significance by examining what would happen if we left it out. Thus an %-',

omision im cost of 50% mum that a job requiring 100 cycles on full SOAR would take

100 + 50, or 150 cycles without the feature. Likewise an omission space cost of 33% indi-

caes that the whole Smalltalk-80 system would grow by 33%, from 1.5 mB to 2.0 mB.
With these meics, we can find the combined impact of removing two independent features

simply by adding the omission costs for each. These data ani the reslts of simulations and

assume no radical compiler changes. (The derivation of the numbers is explained in the next

chapter and in Appendix A.) '

3.2. Type Checking

The PORTRAN statement "I a J + K" denotes integer addition, and can be performed

with a single ad insrction. But, since Smalralk-O80 has no type declarations, i and K may

bold values of any type, from booleans to B-trees. Thus. every time a Smalltalk-80 system

14

'.A

It.
_-- - -,* . - ' .. ~ - * . - - . - - -- ,.

31 -

evlute " +K", itmust fim check th types adthen peror the appropriate oprtin

Meaurmetsof conventional Smailtalk-SO systems show that over 90% of the 46+" opera-

tions do the simplest possible operation, integer addition [BlaS3c]. Since a type check takes

at least as long as an add instruction, most Smalltalk-80 systems waste a lot of time checking L&I

types for integer arithmetic. .

32.1. Tap Trap Bad Guesses

Tbe purpose of data tap in SOAR is to improve performance, not to discover program

,rors as in the R-2 and B6700. SOAR's insruction set folows other SmaUtalk-80 impe-

mentatons in having only two types of tagged data integers and pointers [GoR831. In

SOAR. the high-order bit of each word distinguishes these two types. For arithmetic and

comparison operations, SOAR asumes dt the operands me integers and begins the opera- ,;

don immediately, simultaneously checking the tas to confirm the guess. Most often

(>92%, Table A.4) both operands are integers and the correct result is available after one

cycle. If not, SOAR aborts the operation and aps to routines that carry out the appropiate

computation for the dam types. Figure 3.1 shows the SOAR tags. This feature is very

important; without it, SOAR would rn 26% slower and require 15% mor memory (Tables 4

A.7 and A.8). SOAR is the only Smailtalk-SO system that overlaps these operations. Every

4.om

;% Although condition codes have been widely used to decouple a test from a branch, they "'
oe awkward for Smalltlk system. Instead of condition code , SOAR has very

dficompt-and-skip insctions that quickly perform integer comparisons. Remember that -

e. Smalltak has dynamic type binding. Thus, in SOAR. "i < must be computed with an,.,

SE-.. , (,'

Although conditon c-odes have been widely usedo to. decoule- a st from a bnhI, theyare awwrio aSaiak ytm nsedoLoniincdeSAZa

32 L

0.i . . .

fourm o, integer data

2-it i i&.

forms of pnmr dam -"*.
"'

Figure 3J: SOAR ugged desa te'. SOAR supports two data types, 31-b signed in- % %
logos and 2-bh poinmas. Pointers include a generaioo tag (as explained in Section 3.5.1).
SOAR woids cold have cootned 32 biu of daa plus oue bit of tag for a to aof 33 bits.
The scarciy of 33-bit tape drives, disk drives, and memory boards led us to shorten our
wond to a toal of 32 bin including the tag (31 bits of dat).

instucton that checks the tags of i and j as it compares them. If the condition holds. there is

a one cycle penalty for skipping an insmacton. If the condition fails, the insmction follow-

ing die skip is axecuLed. This is usually a jump. What if one of the operands is not an

integer? A uap to the appropriate comparison software will be taken. In a condition code

larcltecturel this software (e.g. the floating point compare routine) would have to set the

condition codes to reflc the result. In SOAR, all it must do is return to the next instruction

or the one after that, a simpler and faster operation.

Separating a conditional jump into a conditional skip and unconditional jump does not

impose a significant performance penalty. SOAR jump instructions contain the absolute

addms of the target inmucion. Because no address computation is required, SOAR esm- ..

insus the instructon prefetch penalty for jumps (see Fast Shuoe in Section 3.4). Thus, a

conditional branch can be simulated in two cycles, one for the skip and one for the jump.

The only way to speed up conditional branches would be to add a one cycle ,
e:

compare-and-branch instrucdon to SOAR. Such an instruction would require the addition

of a sepae adder to compute the branch taget address in parallel with the comparison

operation. Worse, it would only speed up SOAR by 3%, which would not justify the addi- ---

tional hardware. (See Section A.2.2.)

•, .. , ., ,, -. , ,, ., ., - , - , . . -. . ,- ., , ,- ,.% - .. ,. *_.. ..

33

3.23. Two-Tone Instructions

A tagged architecture that lacks microcode must include insrucuons that manipulate

and inspect tags. Because die Smalltalk system alrady relies on the compiler to ensure sys-

wm integrity, we can allow the compiler to mix insuctions that manipulate tags with

insuctioms that awe constrained by tap. Each SOAR intructiou contains a bit that either

enables or disables tag checking. Untagged mode (indicated by a % in the assembly

language) rns off all tag checking and operates on raw 32-bit data. In untagged mode the

tag bits are conted as data, and the complete insrction set can be used to manipulate this

data. Untagged instructions also allow programs written in conventional languages such as .

C and Pascal to run on SOAR. Istad of providing two version of each inmcon we

could have defined a mode bit in the PSW. This would have been very expensive, inc-,asing

execution time by 16% and memory usage by 19% (Tables M I and A.12).

3.4. Tagged Immediate Operands

SOAR's immediate format has been designed to accommodate tagged data. The

high-order four bits of the 12-bit field becomes the tag bits of the operand, the low order -C

seven bits of the immediate field form the low order seven bits of the opeand, and the eighth

bit is sign-extended to fill in the bits in the middle (see Figue 3.2). Thus, any tagged value

between -128 and 127 can be represented as shown in Table 3.1. This saves time by allow-

ing the Smalltalk-80 software to encode some important tagged values as immediate

operands. Of course, there is no such thing as a free lunch. Reserving four tag bits severely .

curtails the range of addresses and offsets from -2048-2047 to -128-127. However, this -

s representation optimizes the more frequent case and improves performance by 10% (Table

-. A.1S).

4

34

12-bit encoded immediate operand

FaipWextensifn i Value.............................
32-bit expanded immediate operand~Figure 3.2: SOARq's koedaformat A 12-bit immediate format accommodates togged '' "

_-a ta by propagatng the four'most-sign -ifitt a sip-extedin the next one..,.

Table 3.1: Useful lImmediate values. .".

11110dat Field Epands to I Represents
frm to I from to from to ,

32-bit Integers €
1:80 FFF i rrrrrS0 IfrEt-tee -128 -1 - -

000 07F 00000000 0000007 0 127
LN I -bit Integers "'

000ls 07Fw ' ooooc VW rr~rI- OOOO 000007 0 127 !"

Pointers to Frequently Referencd Ojecs .
(includes nil, true, and false)

BOO B F i B0000000 B000007 [
Values for Testngp Tags of Pointers

800 80000000 1"assistat generation
0 90000000 ausociat genrmion

A00 A0000000 full generation % %
BO 30000000 J emeritus generation

-00 1 0000 activation record

3.3. Interpretadon

The Smalltalk-80 system is defined by a stack-oriented virtual machine that is based on

the Dorado Smalltalk-0 implementation [Deu83a]. Each instruction is comprised of one to

dree bytes and generally corresponds to a token of the source program. These instrucions

we usually called b.ecodes. Bywcodes have the following advantages:

• he simple correspondence between source and ob et code simplifies the compiler and .'-",

debugger.

e-.

35

% Smalltalk can be transported to a new machine by writing only the vimual machine emula-

Ito,..."

This approach has drawbacks too:

" Decoding such dense instructions takes either substantial hardware or substantial time.

,Fo rouiemple the Dorado Instrcton Ftch unit consumes 20o* of the CPU [Pie83], and in-,

~~~Berkeley Smalltlk, decoding a simple bytecode takes twice as long as executing it. .

ZZ Some of die high- l instructions lrequire many microcycles to execut• These muldcy-

cle insmctons must be sequenced by a dedicated control uni.

I 3 3.1. Reduced Instruction Set

Following the reduced insauction set approach, we abandoned the Smallalk virtual

machine instruction set, and designed the SOAR instrucuo- set from scratch to minimize the

time and hardware needed to decode and execute instructions. SOAR instructions therefore

resemble microinstructoms. Although such an instruction set results in larger object code, ,.

we believe that the cost of 500 KB of additional main memory is offset by an approximate

doubling in speed.

Each SOAR instruction occupies a 32-bit word, and most instructons take one cycle.

The only exceptions we loads, stores, and returns, which take two cycles. The uniform'

length and duration of instructions simplify instruction prefetch. Figure 3.3 shows instruc- .

ton formats.

SOAR departs from RISC 11 by omittng byte-addressing. Instead, seprate instruc- A* .

dons insert or extract bytes from words. Unlike systems for other languages such as C.

Smalhtalk-SO systems do not support scalar data types that occupy a single byte. (The sys-

en software uses bytes to pack fields into the object header.) Processors with

byte-addressing incur a time penalty due to the alignment logic. Even if no penalty

occurred, adding byte addressing would only improve performance by 7% (Table A. 17). On
y -s..



36

calls and jump$

other instuctions
101-.~ 2 7 . i

10I1%1 Opc de. :de : : l: ::. .

expaned imedite oeran

on77

$toteinstrctio

Figure 33 SOAR's wmwsio store.A instructionsm ldasitgrtoipif

coe adte bout ddesoftetarget. Other intutoscontain a bit to cuabic tag %.~
checking (%), a six-bit opcode, the destination register (or cnionspecification for skips
and amp). a sownc register, and either anober source register or an immediate field. Store
imatucuous, need two source registers plus an immediate value. In order to avoid delays%
caused by multiplexing the source register decoders, the store instruction format moves the
high-order bit& of dhe immediate operand to the destination register field.

the other hand, the byte insen and extract instructions are critcal-without them SOAR

would be 33% slower.

SOAR follows RISC 11 in using register-based expression evaluation instead of the*e

suck model defined by the Smaltalk Virtual Machine. Table 3.2 shows our instruction set.

The loadc and sll instructions have been cloned fronm load and add, respectively. Loadc is

identical to load, but is used by the compiler only to load the type (class) of an object into r6.r



37

Table 3.2: SOAR Instruction Set.

opcode Inctioz Operands cycles Operation

10-17 j%jreqwJ[i][zi] M coast 2 PC+-ncom
Opdom a put 0(mm
[%) Disabm mo=. add., -n4
mag cbebag (umm-LP &~r.)
[wI ciaq. uior window ,

52 1%1sub ms4 rd I i . s-s

[%]xor ~ rs, s4 rd I f -r w&

46 %Ind m 4rl dI4g- ,r'3

11[)ntmr rd4-ua +aiftSogcaIbi

42 Msa, r d 4-Madif zn h idm2cI i
56 %]nsrt rs s. 2 fd *- 0;s

F., bs sU1.0>of rd+.- 2-90
54 [Jxmt is d I ratR .-bz<1-0 ofa

32 %sod n(rs)consd 2-9 e-zs0- &. - .

2Z 0 [%]skip condrs~cost 2 in on cam)-p2

21-2 [IsJup 2odss - if conddgu s2)i' pcpc +

04 mop 60 noding
05 (imaihtrap) aft[PmS~b]

Z06 (interal skip) s (Paza5bi ,)

60-67 (inumral loadi) oft (PinSb]

70-77 (internl stori) aft [Paz83b
00-37 1 %]cal addr I r7 .- pc;

pc 4- add&. cwp 4- cwp - I

40-77 [%]jump addr 1 pc 4--addr

3mt Sq. pcode nude for v"p hzd..
W'

% C



38

if the object is a tagged integer, its type must be supplied by a trap handler. Dedicating an

opcode to this function saves time in the trap handler. Likewise the sil instruction allows a

tag tap to be treated differently according to whether addition or shifting was intended.

Neither of thee cloned insrctions is very imporanL The 1oadc instruction relizes only a

0.5% pformance improvement (Table A.1). We believe that the sl instruction would not%

improve performance much either. Since the compiler used for these studies did not go to

the trouble to geneMt it, we could not measure the frequency of this instruction.

Two glaring omissions from SOAR are a barrel shifter for single-cycle, multiple-bit

shifts and support for in&g multiplication and division. Although multiple-bit shifts may

be important for driving the bitmapped display, they would speed up normal Smaltalk-SO

programs by less than OA (Fable A.19). Likewise, instantaneous multiplication and divi-

sion would shave only 3% off of our benchmark times (Table A.20).

One drawback of SOAR's reduced instruction set is the increased time for compilation.

Bush has written a convener in Smaultlk that translates bytecodes to SOAR insmtucions

V,, [BudS]. He rports that, running on a Dorado, the mean time to convert a subroutine is 50

ms, md that **Subjectively, the convere does not intrude on interactive system use..."

The extra time needed to compile to SOAR instructions does not seem to pose a problem.

More significantly, SOAR's simple instruction set enlarges compiled code. Experi-

ence with Hilfinger's Slapdash SOAR compiler suggests that on the average, one bytecode

results in one 32-bit SOAR instruction. Thus. ignoring data objects, object headers, and

literal data within subroutine, tre is a fourfold code expansion. However, bytecodes con-

sWrot only about one eighth of a 32-bit Smallalk-80 image, and the net increase is only 0.5

M3 over the original 1 MB. This is not an exorbitant price to pay given current memory

technology. 
lot,

m '

--



39 _-

Other compiled Smaltalk-80 systems also pay this price. The Xerox 68010 system

devotes 0.25 MB to a cache of compiled code [DeSS4J. Deutsch reports that one bytcode

results in six bytes of MC68010 instructions, which is worse than the factor of 4 for SOAR

[DO85]. This means that if it were to compile all of the code, as the SOAR system does,

the Xerox 68010 system would need 0.7 MB (Table 3.3).

Finally, our decision to abandon bytecodes will force us to rewrite the Smalltalk-80

-" debugger. Lee has designed a debugger for SOAR and has built a prototype in Berkeley 4."

Smallalk [ ]. He exploited the hardware oranization of SOAR in the design of the

debugger to add a conditional breakpoint facility and increase execution speed during
debugging.

3.3.2L SOAR Interrupts and Traps

Interupts and traps play a larger role in SOAR than in RISC IL Unlike C Smalltalk

grew in an environment with extensive, system-specific microcode. Since SOAR has no . -

V."

microcode, unusual simanoas must be met with a trap to a software handler. For example, '

as described above, other Smalitalk implementations check the types of arithmetic operands ,.

sequentially, before performing the operation. SOAR checks in parallel, trapping if the
4...

operands an not simple integers. These account for about half of the traps (Table A.25).

How valuable are conditional trap insmctions? They save time and space by replacing

a two-cycle two-insauction sequence with one single-cycle instruction. For instance, the

prologue in each subroutine uses a conditional nap instruction that verifies the type of its

Table 3.3: Space Penalty of Compilation.
Systm execution model code expansion ratio memory required*
Berkeley Smalltalk bytecode interpreter 1 1.0 MB
Xerox 68010 cache of compiled code 6 1.3 MB
SOAR compiles everything 4 1.5 MB
hypothetical 68010 compiles everything 6 1.7 MB

40.4
sudl'wsopu



first argumeLnt. This saves a cycle over a skip and branch in the common case. Trap inst uc-

lions also support type checking in low-level primitive routines, and tag checking for

automatic storage reclamation. However, if the tap instruction traps, it takes mor time to

handle the tap than die jump from a skip-and-jump sequence. In fact, trap insauctions

account for 10% of the traps (Table A.25). Despite all these uses, the savings from trap

intructions does not add up to much; SOAR would ran only 4% slower and require only 2%

mor memory without them (Tables A.23 and A.24). The fact that tap instrctions save lit-

tie im results more from the low frequency of trap instructions than from the penalty asso-

iated with taking die npL.

The remaining source o traps also arises in RISC U. A call or return that exceeds the

on-chip register window capacity must trap to a routine to save or restore a set of registers. ',. .

This accounts for the remaining 409 of the taps (Table A.25). ' "

To reduce the cost of mrapping, SOAR exploits shadow registers that catch the __

operands of the trapping instruction. These wre inexpensive in single-chip processors; they

am just two mor registers on the dam busses nea the ALU. This feature is insignificant;

without it. SOAR would run only 0.04% slower and require no mor memory (Table A16).
S.

Other features that simplify trap handling include simple instructions and uniform insruc-

lion Sima.

SOAR does not support nested interrupts or traps because they complicate the architec-

am. The interrupt-enable bit in the PSW (Figure 3.4) is reset upon an interrupt or trap.

Each map handler first captures any necessary machine state. then re-enables interrupts. : .. ,

Most handlers need their own register window to hold this state. The normal method to

obtain a new register window would be to execute a call instuction but, since a call can

cause a rmap (see above), the trap handler must simulate the call (and trap). After getting a

new window and saving the machine state, the handler can re-enable interrupts (and option-

ally surrender its register window) with a form of the return instruction.

.. 4 ... r '** °..*.* .- - -



41

%! ~~~lot nablenlFatu n

shadow shadow

Figur 3.4: SOAR Proram Stauw Word. le SOAR program stus word contasn a deti-
noon register shadow field, an opcode shadow e and enable bits for external and
software imenps"

.J,

When an interrupt or trap occurs, the instruction that is executing is aborted before it

can change any registers. The address of the aborted iansttion is saved in r7. 1/0 inter-

rupts re disabled by clearing the interrupt enable bit in the PSW. This freezes the shadow -.

registers, which normally track the ALU inputs. A vector is consmtructed from the trap base

register, the opcode of the aborted insmuction, and the reason for the trap. Finally, conu-ol is

tiranmserred to the vectored location. Table 3.4 lists the various categories of traps, with

inmrrupt priority listed from highest to lowest..

Many instructions can trap for several reasons at once. To amplify the interface to the CI

tap handler code, the reasons are prioritized. After handling a trap, the offending instruc-

ion is typically meecuted to spring any remaining naps. Table 3.5 shows which reasons

Table 3.4: SOAR traps and interrupts.
Name Vector Pri Class EiPlanation
Illegal Opcode (ILL) 0 A k3bowl or kn:23> - nt;a'd
Tag Trap (17) 1 B Sl (SKPSS.
Software Interrupt (SW!) 2 B k3o2 -01 and pBwd> - I
Window Overflow (WO) 3 C I - call mi cp6,. - I =,p<6:,>
Window Underflow (WU) 4 C I a M and cwpc6:4. + I a swpc6:4>
Data Page Fault (DPF) S C page fauk pin maned duag

data samy ue
Trap Instruction (TM) 6 C I a trap ineacuon a coadiuon is mM
Generation Scavenging (GS) 7 D See rSKIS].
Instruction Page Fault (IPF) 8 E pap fa"k pin mnme dan ag

-each of next in''on/t q'.5

Input/Output (10) 9 F 110 intempt pin msond dung;
i-fetch of next ,stacuon

.1

...., ... .........., .,, ..,. ,..... , .: ...., .., ..
. . . . . S. . . . I . . .



42

apply to which instructions. If instud of vectoring, SOAR put the mason for the tap in a

special register te system would be only 3% slower (Table A.8).

When SOAR does trap, it expends two extra cycles to flush the pipeline. A one-cycle

tap, while feasible, would have significantly degraded the cycle time [Pen8$b. Since the

ex trap cycle increased the number of cycles by less than one pemcent, the net result was a

fastersystem.

3.4. Fast Calls

The Smalitalk-80 system sutesses program modularity, but omits macros because they

would make it harder to incorporate changes quickly. If the user changed a macro, the sys-

mm would have to recompile all of the modules that instantiated it. This would make it

more diffcult to maintain the split-second response time that is crucial to highly productive .. '"

pro g. Insuad, SmaUtalk- programs an broken up into many small subrouties.

Consequently, Smallalk-80 systems execute a higher percentage of cal instuctions than

most other systems. In addition to being frequent, calls are also expensive because:

" To aid program debugging, Smalltalk-80 initializes all local variables on each call.

" A consequence of Smalltalk-80's power is that the desination of a call is recomputed

4 from the type of the first argument, with a table lockup each time the call is executed.

Table 3.S: Trap reamns by instruction cateor
___ A B C D E

Call al SWI WO IPF
Jump ILL SWI PF"
Return LL WU GS 1PF 
ALU 0I TT F
Skip LL "T IFF
Trap ILL TT TI IPF
Shift ELL TT F
Load 0L TT DPF IPF
Store 0L IT DPF GS 1F-

t* y3LF. ,P

• ,' ON

, A%I, •_ Z.l.._ ',' , .' d "'.''e . -.. . .r .L ., . _, , L L - .L -



43

The nsult is dt many Smallmlk implemnton (including Bkley SmIk and

Dorado Smalltalk) spend about half of their time an calls and returns [Dau~l]. SOAR

nkluces die Smalltalk call/return overhead in v-a ways.

3.41. Multiple Overlapping On-Chip Register Windows

SOAR, like RISC i, optimizes subrouine calls and returns by providing a large,

on-chip register file. Tin registers are divided up into overlapping windows. Instead of sav-

ing or restoring registers, calls or returns merely switch windows (Figure 3.5). Compared to

C language subroutines the shorter Sutalltalk subroutines pass fewer operands and use fewer

local variables, and so need fewer registers. For this reason. each SOAR register window

has eight registers instead of 12 for RISC 1. Figures 3.6 and 3.7 show the register organiza-

do. of SOAR. In addition to 56 more rigisters, the inclusion of register windows results in

the additon of a register to select the current window (the Current Window Pointer, or cwp),

a register to detect overflows by. recording the last saved window (Saved Window Pointer, or

swp). more elaborate register decoders, and tnapping logic (PenSgb]. Despite the cost of all

the added hardware, Smaltalk-SO's predilection for procedure calls makes this feature very

important. The cost of saving and restoring a conventional register file would slow the

machine down by 46%, even with load- and store-multiple instuctions (Table A.29).

de
f..' -,

-. !

V.j

% ' J % /*/% .% % ¢ . ¢ e ¢ ¢%%:'% - . .- , . .. - - ...d...K:- . - .' - '.....*.



( 44 ___'4

Physical Registers Logical Registers

R31A 31.5 P3)-C
Globae '-l ' h

________ 24-A 524-5 *24-C
R23-A *23-B R23-C

________ RJ6.A R16. *16-C
o.-

0J

0
o

*15-A
HIGH-A

R7%A R15-8

WWAJHIGH-8
__________ 5-A R&B

R7.5 R1S-C
LOW.5HIGH-C

_________ *-5 58-C
.z-C

LOW-C
*0-C.O .f- ', i

Figure 3.6: SOAR's register windows. Ike RISC 1. SOAR has many physical sets of --itr that map to the loia register seen by each subronde.

!. , -N * #

GLOBAL R24

SPECIAL
_________ R16

RIS
1HIGH

R7LOW % '-

______ RO

Figure 3.7: Logical view of registerdr. The HIGHs hold incoming parameters and local q
variables. The LDWs are for outgoing argwnems. The SPECIAL& include the PSW and a
epser that always contaim zero. The GLOBALs am for sysem software such as trap

handlers.

.,-4p

.N



*1, .-

45

When the number of activations on the stck exceeds the os-chip register capacity.

SOAR faps to a software routine that saves the contents of a set of rgm n in memory.

Unlike RISC 11 SOAR has load- and store-multiple insmctons to speed register saving and
V'%%..

restring. These insructions can transfer eight registers in nine cycles (one instuction fetch --

and eight date accesses). Without them, the system would need eight individual inmctions

that would consume sixteen cycles (eight instruction fetches plus eight data accesses).

Load- and store-multiple are also helpful for garbage collection, copying dam. and opera-m%

dions on bit-mapped images. These insmacdons have the abiliry to operate on

noo-contiguous dam; the increment between memory references is given by the SOURCE2

.4 field. In renospec, these multi-cycle insmctons added some complexity to the design, and

the benefits - 3% of execution time and 2% of memory may not be worth the costs

(Tables A.33 and A.34).

3.4.2. Caching Call Targets In Line
-,

Another way SOAR reduces subroutine overhead is by decreasing the time taken to
VI 46-J

find the target of a call. Oncwe computed, the target's address is cached in the instruction

steam for subsequent use, as suggested by Schiffman and Deutsch [DeS41. Figures 3.8

and 3.9 illustrat this idea. This in-line caching exacts a price for its time savings; SOAR

must support non-enuant code. Since all Smalltalk processes share the same address space,

process switches must be avoided in sections of code that modify or use the cached data.

One approach would be to implement semaphores in software. This would be too expensive

because each Smalltalk call eftcutes a short non-reenmtn section of code. The approach we

followed was to add a bit to each instruction to disable process switches. -

In Smaltalk, calls and jumps are so frequent that the virtual machine can defer a pro-

cess switch until executing the next call or jump instruction. The SOAR call and jump

instructions include a bit to specify when it is safe to switch processes (DeuS2b]. This bit

I,%

.-1_ . ,.,, e_,-_ :. /. .,-,"!.',-,--- " /_+ .' ,-. '....-+.. -,%."-".--..-.-.-' '.'3 '+ j' ' ,' ," '



46

enables a software in rrt-p. When the operating system desires a process switch, it sets a

bit in the Program Status Word requesting the software interrupt and resumes execution of

the same process. The next time a safe jump or call is executed, de software interrupt

pnsfters comol to the operating system which can then safely suspend the process.

Although complicated, in-line caching pays handsome rewards. The conventional way

so cache call targets is a hash table. But the overhead for probing into a hash table would

slow SOAR by 33% (Table A.37). The hardware penalty for in-line caching is the software .--J

trap mechanism. If we were forced to omit this, we could use an indirect in-line cache. The

informations could be cached in a per-process dam area instead of the call instruction. This

would slow SOAR down by 79 (Fable A.37). Even with in-line caching, SOAR still spends

BEFORE 
%

0o

00

0
0s100

... ._____ may? table for Swaip

0o .. 1000 4

00

r6 -- aString "

* ,, 0
o %V %

o 
0

00

calling code stng Prin rutne

Figure 3.8: Caching the target addra in the insticon stream. In dtis example, the print
routine is called with an argument that is a sting. (The argument is passed in r6.) 'Me fist
time the call imwacuon is executed, the call contains the address of a lookup routine and the ..
wordafter the call conains a pointer to the nme -priL" The lookup routine folows the
pointers to the enty table for strings. and finds the entry for "pnnt." It then ovewrites the .
call immaction with a call to that routine and replaces the word after the call with the type
of the argument (sing).

.. .

..- . . .- . ..g'. . . .,. " . . .. .. .. ,-.. ._ . .v...' . . . .. ... ",.-.



mW~~~~rje "t~~~~w 'T~Z I".,N -. V . .rK -L 4 X-. It. -77 Z-. .w- -- 17 :-, . 11 -. C K. - .-

47

AFlER

&String

0 checktyp ,

r64-aSinag oaue
ca 1000 0

0

0 0%'

calling code mug prin routine

4 Figure 3.9: Caching dw target address in th instrucon stream. The next tine the call is
executed, comrol goes direcdy to the suing print routine. A prologue checks that the
corm argumnt's type matches the contents of the word following die call instruction.
This wod contains the type thin the argument had the previous time the call was executed.
If the types match, control falls through to the stuing prim routiu, otherwise another table
lookup is needed.

11%I of its time in cache probes and another 12% handling misses. Further research into

computing the target of the call could yield substantial savings.

3.4.3. Fast Shuffle: One Cycle Calls and Jumps

Finally, the call instruction itself has been designed for rapid execution. In most archi-

:cu, .s, a call requires an address computation (typically tie addition of an offset to a base ..Pil

A' register). This forces the call to take an extra cycle because its target cannot be prefetched.

In SOAR, the call instruction contains the absolute address of its destination. Furthermore, a

$_ call (or jump) can be recognized easily by examining only one bit. This makes it possible to

detect these inructions in time to send the incoming data back to the memory as an address.

This way, a call or jump on SOAR executes at full speed requiring only one cycle. This

"Past Shuffle" mechanism combines on-chip logic to detect calls and jumps with and an ..

-4..

B).-..



48

oft-chip latch to store the incoming instruction and send it back to memory. Figure 3.10

illustates the Fast Shuffle logic. Though not spectacular, its performance impact is _Z

significanL SOAR would use 11%I more cycles without the Fast Shuffle.

Psadleton has uncovered a serious flaw in our realization of the Fast Shuffle [Pen8Sa].

When a jump or call instruction follows a skip, the skip condition must be evaluated before

de chip can signal a Fast Shuffle to the memory system. If the condition holds, the memory

system must use the PC as the address of the next insrction; if the conditon fails the

memory system must use the target field from the jump or call instruction. In designing the

insuction set we encoded tie condition field (of skip and tap) so tightly that a PLA was
4ON.

required to decode the condition and the output of the ALU. This PLA adds 110 as to the %

time needed to compum the Fast Shuffle control signal during a skip instution. Although

the NMOS SOAR chips can execute an instruction in 400 ns, the memory system can not

start the next insmction fetch for another 100 us. reducing the effective cycle time to about

510 as. This overhead could be eliminated by foregoing the Fast Shuffle and using delayed

branches and calls. Alternatively, the insuction set could be redesigned with a condition

field that could be decoded mor quickly. This problem would have been found much ear-

lir if we had simulated the whole system instead of the processor.

3.4.4. The Return Instruction: Parallel Register Initialization

The other half of the tam is the return instuction. In SOAR. die return instruction

performs one compulsory and three optional functions, specified by the low-order three

opcode bits. The compulsory function is a transfer of control, which means that the

bare-bones return instrction can be used as an indirect jump. If tag checking is enabled. the

ag of the retumn address is checked. This provides a means to intercept mums when the

activation record must be saved. The first optional function enables interrupts and yields a

retumn from intrrupt" instruction. The second optional function increments the cwp

- %
' J " ' 'q ' " ' % ' % ' % ' 'W '' " % " " " % % "" " '" "' % "' " " '- "" "%J J J ' ,, , . ' o *" ' J '% % ' ' ' " " " - ' t' - ' ' % ' " " %%4' " 1" . v' r4 .-.P J



49

% ,SOAR chip

imt ianch A -

ou In

Figre 330: Fa nt Suffl ogic:. When a call or jump is fetched from m enry, the ext in- . .
t ut o is p rfetch ed based on the x terna ad dre ss latch i nt ed of the P C . %, ,

(changing reister windows) fo uring from a normal call.

The Smalltalk-80 language requires local variables to be initialized to nil, so die last "

optional function for SOAR's return instuction prepares registers S through 13 for a future",,

call by writing nil into them Instead of commencing each subroutin with an instruction "-

sequence to write nil into each relgister that will contain a local variable, SOAR exploits

VI] circuitry to initialize the reisters in parallel. Although it would be mom straightfor-

tr ward for the ca]] instruction to perform this initialization, this would slow down the call.

lm sm d, w e have plac d thi f u nctio naity in the re tur ns tuction . Sinc the re tur ins tru--, -

S1.

d~on must wait an extra cycle to fetch its arget instruction, the "'hilling" does not slow the ,

instruction down. This feature eliminates the extra tine required to initialize die registers q

afaer every call. Ironically. Smalltalk-80 subroutines use so few temporary variables - less J,, .

, 40.

fhan one on the average - that this feature hs lie favorable impact. e system would.

ol run 4.3J slower and use I% mog. memory without it. fr e

4._ , 4

, .

.- _.4 .'. .'.. .' '.',. ,'.... . .',.,, ' - - . - - : .: : ; ...-. '.,.-.,..,



so

3.5. Object-Oriented Storage Management ' '.'

Smalltalk-80 data structures am called objects. SOAR objects average 14 words in

length and live for about 500 insmctons. Smalltalk-80 objects are smaller and more vola-

ie than data stuctures in most other exploratory programming environments. Smalltalk-80

system face three challenges in managing storage for objects:

. Awomaic storage reclamanion - On average, 12 words of dam, an freed and must be

reclaimed per 100 Smalltalk-80 virtual machine bytecodes executed.I..
. Virtual memory - All objects must be in the same address space.

* Object-relative addressing - Although offsets into objects are known at compile-time,

base addresses are not. Code must be compiled to address fields relative to dynamically

determined base addresses.

3.5.1. Automatic Storage Reclamation

SOAR supports Generation Scavenging to reclaim storage efficiently without requirmng

Icostly indirection or reference counting (see Section 5.8). This algorim is based on the
observation that most objects either die young or live forever. Thus, objects are placed into

two generations and only new objects ae reclaimed. A better method of storage reclamation
*54 . _%_

has a strong impact on performance; most other algorithms would squander 10% to 15% of

SOAR's time on automatic storage reclamation instead of Generation Scavenging's 3%.

(see Chapter 5). Hence, without Generation Scavenging SOAR would take 4% to 15% more . .

cycles to run the benchmarks. .5.

Traditional software and microcode implementations of object-oriented systems rely

on an object address table (Figure 3.11). Each field of an object contains an index into this

table. and the table entry contains the address of each object. The level of indirection sup-

plied by the table provides support for compaction. As explained in Chapter 5, Generation 7

Scavenging provides compaction for free. permitting SOAR to function without an object -,

I '% *5*

'C,.



°% P

table (Figure 3.12). Without this algorithm, the extr work to follow the indirect pointers

through the object table would slow SOAR down by 20% (Section 5.9.4).

Gmeration Scavenging requires that a list be updated whenever a pointer to a new

object is stored in an old object. When designing SOAR, we thought that stores would be

frequent enough to warrant hardware support for this check. Thus SOAR tags each pointer

with the generation of the object that it points to. While computing the memory address. the

store instruction compares the generation tag of the data being stored with the generation tag

BEFORE

Object Table tObjObject Object 2

cont address__

tal i xM address able index

table index calm Iaddln - table index .,
t" indexcout addesstabeide

3iurJ): Indirect uddresmg. In traditional Smlltk4 syutems. each pointer a really
a table index. The table ety commas the target's reference count and memory address.
This indirsdcou required pievious Smailtalk-80 systems to dedicate base regters to fre-
quendy accessed objects. The overhead to update these repsters slowed each procedure
call and return.

AFTER

Object 1 Object 2

Figr 3.12: Dire adessing A SOAR pointer c ntain the virtual address of the targetobject. This is the futs way to follow pointer..-,4



52

of the memory address (Figure 3.13). For 96* of the stores, list update is unnecessary and

the store completes without trapping (Table A.52). Once again we rely on tags to confirm

the normal case and tap in the unusual case. Surprisingly, tagged stores are so infrequent

#hat harware support saves only 1% of the time and 3% of memory over an explicit check

(Tables A.49 and A.5 1). This feature does not seem to worth the effo.

-1111 ')

, ,~.--, :

.4,r

y.

no : :

1111) is for comexts and is explained in Section 3.3.2. '

Fiue31:Gnrao gcekn n aallw, soeoeao.Te.itcek(n "".*"'"

.-4. ".. *4.'.

.e w .-.- . . "1 " .".% . t.% . • ,% "T " % • "q'% """ " " " " % " . % ', " % 'Yes%"



.M7 72"ailze
53

3.2. Activation Records a Objects

Smalltalk-80 activation records pose a special problem. Since each call needs a new

activation record, they must be easy to create. Because local variables reside in them, at

least the current activation record must be easy to access. For thewe reasons,

high-performance systems for other languages allocam activation records on a stack, and

keep the active activation record in registers. The problem for Smalltalk-80 systems arises

because the language specifies that the format and lifetime of an activation record shall be

the same as any other object. In other words, a SmaUltalk-80 activation record must be -

stored in memory with a standard object header. Worse, an activation record cannot be deal-

,ocated until the last reference to it is destroyed - even after control reurs from i.

SOAR caches activation records in an on-chip register file for speed, backed with an

overflow stack in memory. Pointrs to activation recorde are ,am. so SOAR's hardware

merely detects these and causes a rap at the appropriate time. Tbe first trap occurs when a

reference to an activation record is created. Pointers to activation records have all the tag

bits set. Wben such a word is stored into memory, the tag check causes a trap. At the time -

of the tap, the high order bit of the activation record's return address is set. Setting this bit

indicat-s that the activation record may outlive its parent. Since these records am normally

allocated and freed last-in-first-out (LIFO), we label such anomalously long-lived activation

records as non-LJFO. The return instruction then raps if the return address has the high

order bit set - this lets software save this activation record in the heap.

What if a program refernces an activation record while it is still on the stack? First.

These gaps are initialized with object headers to permit the stored activation records to

behave as objects. Second. SOAR's hardware provides pointer-to-register addressing. Each

load and store checks if the target address resides in the on-chip register file. If so, the chip

substitutes a register access for a memory access. This mechanism makes it possible to

---- 4

-. ° ." " . % "o " ', .", . -"0. -" " - % ". -"1.-"-" .- * " -.".% "-" " -"-.. 'd% '-" - ,, 4''



54

access onchip activation records as if they were in memory.

Since designing SOAR, we have come up with a software solution to the

pointr-rgist problem. This scm elimmates the comparitr and complicated control

;: logic incurring only a 3% performanc penalty (Trable A.53). The key idea is to generate. '

illegal addresses for the unpredictable but uncommon activation record references, and to

guarantee that the common and predictably referenced activation records reside in memory

when needed (Section A.5.3).

3.5.3. Virtual Memory

The SOAR system will include disk storage and thus supports virtual memory. Sec-

tion 5.4 explains our choice of demand paging over segmentation. SOAR therefore includes

a pin to request a page fault interrupt. The uniform size and lack of side-effects of SOAR's

instructions simplify page Wt recovery.

3.6. Implementation

In this section, we give a brief description of SOAR's implementation and microarchi-

acture. This is covered in more detail in Pendleton's dissertation [Pon85b]. The casual

reader may want to skip this section; those interested in details may want to mad on and

learn about the data path required for SOAR's instruction set. Although simpler than many

other computers, SOAR's implementation is substantially more complex than its predeces-

sor, RISC 19.

3.6.1. Special Registers

SOAR has eight special-purpose registers that simplify the instruction set and help

with interrupt handling (Tables 3.6 and 3.7). For instance, a register that always contains

zero permits the assembler to synthesize moves with add instructions. Making the program

counter available as a register provides relative addreising without adding another address-

-.- ,... ,....



55

ing mode. However, supporting urestricted use of these registers would complicate SOAR.-

Three resrictons apply to these registers:

A result wrinen to a special register does not take effect until the end of the next

ianstucton. The SOAR microengine cannotforw d special registers..

• A special register cannot appear as the destination of a load instruction.

* A special register cannot appear in the SOURCE2 field of an insatrction. %

4.*

Table 3.6: SOAR special relisters.
Nammbo Rfg. Bits Contents Notes
rTeroeo r16 31:0 Always. 0. For synthesizing insuons.

program pc r17 27:0 addm of mu Forimactonfeuchin.
counter imnaucon PC.rlgve addms...

and canastateme indi.ct
jump (ye). Should m'
be modified dibacly. but
only with jump. cali or

ShadowsA sha r19 31:0 copyofAinpu Theiadowm rasim t'ack
__ ALU or ahifwd wo executd when

ShadowB shb r18 31:0 GopyoflDinput interrpts n eibled SW
m ALU or hifw froeze when mmupta M

disabled. 71us. a
tunp-handlor can save
dm by minding operand
from the shadow uelsts
inWad of decoding the

_________________________ _____________offending immarchon.

Trap tb r21 31:10 bm addres of
Base the interpt and

Up vector m
Saved swp r20 27:4 memory address of For pormer-o-mrg.ster

, Window object header of ogic. window.ovedtow %
Pointer the most ecently and .inkfiow trp logic.

Ssaved regiser window and computin address of .'

Current cwp r22 6:4 index of on-chip curmnt actvaton iea/rd.
Window register am seving Cwp coauzos local mngsmPoinwr as high window decodes. i.%"IN

.%Processor :psw r23 15:0 m belowStatus"

-" 1 o. . - 1_r-, -, . - " -- -

%4

'p.%



56
ii--

Table 3.7: Processor Status Word fields.
Nme Bits Contents Notes
shadow 4:0 i destination register For ump handle.
destination j field (bits 22:18) ._**,

of last instruction

executed with~I
- interrupts eabledSsoftware 5 1 When this bit is on For proces swithing

interrupt and a call or jump
enable is executed with

bit 29 on, SOAR takes
.a software trap.

interrupt 6 Enables I/O intermupts Disabled in itism'pt
enable and shadow registers. bsud m. _

i 7 inert Unued.
shadow 15:8 opcode field (bits 30:23) For trap handlers and
opcode of last inswuction tap vectr lop. -.

executed with interrupts CAVEAT: SOAR don UO .

enabled slipport 211Ied taps.
Tenabled T tae when
inmmpts am disabled "
wil ot vector to . .-

___ _ ____ __ ___ _ prop. opcode.

3.. The SOAR Datapath --

The SOAR datapath includes a register file, ALU (and byte shifter), the program

counter, memory address register, and saved window pointer. When reading, the busses are

first precharged, then two separate registers may be read onto the busses. For writing, a sin-

Sle register is addressed, and the data are driven differentially on both busses (Figure 3.14). .

-%'

3.6.3. Pipelining in SOAR

The cycle time of SOAR has been matched to memory cycle time. Each instruction is

one word long and most can execute in one cycle. While one inst'uction executes. the next

is prefetched from memory (Figure 3.15). As described above, jumps and calls require no .-

address computation and therefore cause no delay in the pipeline. Conditional branches are

synthesized with a skip and an unconditional jump. This takes two cycles, which is the same

as a conditional branch would require.

% #6-...".%. .



57

! .0
"' 4-

:',. im/ext" ~~~~~is t ltchmi, n tao oi."st stediaimlth n

uip extend

"-' ,15 PCL' MAL 7 mo.adm -
S. ' 4..

i.ext" is die byte iertion and extacton logic "ids" is the destinaton latch, and
"M is te am mr addes lS~)~ atch.

cycle i- cycle i cycle iii '

inmaucton X-1 exiowt writiback

instuction x fetch exeanewiwac

" imtructOn X+ I

/ 1ph phi 2 Phi 3 x.'

deCode read ALU &--precharge mg write back

Filuve 3.15: Pipmlining in SOAR. Althoulb an instructon takes three cycles, SOAR can,.execute one sami ucon per cycle. Each cycle in turn consists of three Phases.

/ -,7

/ .5

5,./ -



( 58.

Thie anatomy of SOAR's cycle is determined by the fact that the damapath allows two

simultaneous precharged reads or ame write to the register file. Each cycle is divided into

thre nonoverlapping phases. hn phase one, SOAR decodes the msnruction and precharges

the busses. In Phane two, the source regis ers ane read onto the busses. In phase three, the

ALU combines the two operands. Simultaneously, dow result from the previous instuaction is

stre back into ins destination register. Thus, the result of instruiction i is not actually stored

into its destination register until the end of instuction 4.). Forwarding logic hides this
delay; if instruction 4#I attempts to read the destination register of instruction i. the desired

value is forwarded from a latch at the output of the ALU. This has a significant effect on

performance; if instead of forwarding, SOAR stalled the pipeline for a cycle the benchmarks

would rn 15% slower (Table A.34). 
4.

14IsPendleton has pr osd a rearrangement of the pipeline that would shorten SOAR's

cycle time by 25% [Pen85bJ. However, the return instruction would be one cycle longer, for

a total of three cycles per reomr instruction. What would be the n effect? On the average,

SOAR performs 5.4 retuirns per 100 cycles (Table A.47). Thus. the effect of lengthening the

return instruction would be to execute 5.4% more cycles. Since the new cycle time would

be M5 faster, the new time to run the benchmarks would be 1.054x7596-79% of the old time.

(See Section 4.1 for a description of the benchmarks.) Rearranging SOAR's pipeline would

substantially reduce execution tim.

3.64 Inplenientatlon Statistics

Table 3.8 contains some preliminary data for the NMOS SOAR chip. taken from- U

[Pen85bJ. These chips were fabricated by MOSIS [MOSIS] and performed faster than the wqr

simulators predicted, except for the unforeseen delay for jumps and calls described in Scc-

dion 3.4.3. The MOSIS NMOS SOAR chips can execute an instruction every 400 ns, which

must be denated to 510 ns for the jump and call delay. Pendleton has perfected the host



59

* Table 3: NMOS SOAR characteristics.
line width 4 p

sin (w/ scribe lines)
width 10.7 mm
height 8.0 mm

power dissipation -3 watts
supply voltage 5 volts
tansistors 35.700
d cocks 01 90m , .

underlap <CO ns
*2 90,,s

underlap <Z us
#3 145 as 14 

0
processor cycle time <400 as

fast shuffle seling tme 110 as
nmmumi system cycle time 510 s
WOWua system cycle time 800 ns

Pais 82
Ld

board fr SOAR, and has succesfdully run the entire diagnostic suite on the SOAR chips.

The best SOAR chip sesed to dame functioned perfectly with the exception of a faulty bit in

Sregister. 
.

3.7. Sumnmary

In designing SOAR, we have attempted to find a few good ideas to supplement a basic

RISC for SmalItalk. Thes ae listed in Table 3.9. As a result of including all these features, .

SOAR is considerably more complicated than RISC U. The next chapter evaluates our

arhiecurue, and identifies its successes and failures. .

% _

4.9

4 *'.l

4 4 /., )



( 60

Table 3.9. SOAR Architectura ides. ea&Idea IS ction F lrom .,-:';

31-bit arithmetic (with tag & overflow checking) 2
a tagged/untagged mode bit in each insmacton 2 ,
coditioal skips 2 PI P-8
tagged immediate values 2
complation to low level inmuction set 3 RISC ni
unifom length imacuns 3 RISC n
word-addressing w/ byw-insert and -extract 3 MIPS, PDP-l10

sutions, tagged as integers 3 I_-___"
vectored priortized ininrrpts and taps i 3
shadow registers 3 .
in.Uine cad rge t cache 4 Xerox ST-68K I
software trap on jumps and raps 4
cm-cycle calls and jumps (ft shuffle) 4 _-_

factored er ins dot c %on
paraUel register iaaizaton on return 4_ ""
load- and store-multiple 4 IBM-360
multiple overlapping register windows an chip L 4_ _ RISC II
noncontiguous load- and store-multiple I 4 _,____,,_.

generation scavengingnapping stores of new pointers into old objects 5 BS
trapping stores of activation record pointers 5 BS

wapping returns from referenced activation records 5
pointers to registers 5
paed virtua5e 5 Adis, Sun .
direct object addressing 5 BS
special registers 6 RISC 1,
pipelined dam path with forwarding 6 ISC II r.

offline reorganization BS
ing checking of addresses for load & stare
hard-wired instructions RISC II

.-. . **.*

% PtC %

127Z
Z
*g q %

,.:.-. *4

~ ~ %* * ** - - - '* - - %* V.*' . . ~~ ~ ~ -. .:



61

Chapter 4

Performance Evaluation of the SOAR Architecture

Y

4,1. ltrbduction

Can a reduced instruction set computer make Smalltalk-80 practical? In this section

we evaluate SOAR's overall performance, place it in context with other Smalltalk-80 sys- 4.
rams, and examine features in the architecture to see which pull their weight and which are

just a waste of eFot. Toward this end, we have analyzed running times and insrction 4..-. -..

mixes of insruction-level simulations of Smalltalk-80 benchmarks (Figure 4.1).

Smaltalk-80 image converw Berkeley Smalitalk SOAR compiler
image (mi) (bs) (sewb2s)

(Xerox) (dmu) (dmu) (ads, pub)0 [

SOAR mntime system SOAR assembler SOAR simulator simulaton reults6
(Ss) (s) (Daedalus)

(ads, dmu, puh) (ads, dmu, puh) (ads. dmu)

5% ~~Figure 4.1: Steps involved in a SOAR sinmulation. Fmru rot removes the objec table from .

die Xerox Snudltalk-0 image. We then use BS to make any modifications necessary in the
image (e.g. to eliminate some becomes). Newb2s produces a SmaUtalk image for SOAR by
couvemgn the BS objects to SOAR format, and running Hilfinger's Sapdash compiler
which ranslates the bytcodd programs to SOAR imnucom. We have also coded the
Smihalk primive operations and storage management software in SOAR assembly
languqae. Aftr this as usembled, it is fed to Daedalus. our SOAR simulator along with the
Smallk image. The inials below each system indicate it author ads is Dais Samples,
pha is Paul Hilfinger, and dmu as David Ungar.

.,4..

• ", - . > - y'/ ,'.'," '''.'e ",e - , -'-'. ,e ,- . ," ," "'"d" " "4, , 
d
"



*-.': ';-

62 -

We have instumented the SOAR simulator to record two types of data: frequencies

and profiles. Obtaining data from the simulator makes it possible to masure execution

without altering the program being measured The simulator counts the number of times it

executes each instruction, the number of each type of trap taken. and other events. The

simulator also samples the program counter every hundred instructions. To gather the data,

we run a benchmark once, ret the simulator's counters, enable profiling, run the bench-

mark for a second iteration and then dump the raw dat to files. (Appendix B contains our

raw frequency dato.) UnixTh utilities (awk and sed) analyze the data and report the usage

and value of particular features. (Appendix A contains these results.)

Xerox has defined an official set of benchmarks for the Smalltalk-80 system [McC831.

Some are called "micro-benchmarks" because they lest particular small operations like

integer addition. The rest am called "macro-benchmarks" because they test large opera-

,dons like compilation, display, and exploring system organization. 7hese an typical

high-level activities for Smalltdk-80 programmers. We selected five macro-benchmarks for

our measurements. When writing Smallurlk-80 programs, we spend moue time waiting for t.

the compiler than for anything else. For this reason, we started with the testCompiler

benchmak. The other four benchmarks were chosen because they did not output to the

display and did not require substantial modifications for SOAR. Although fast display out-

put is vital for SmallUalk, it has been addressed by many others, and is outside the scope of

this dissertation. The following descriptions of the benchmarks we chose quote from

[McC:83J: *.,.-

IntClasOrganizer

"This benchmark measures the speed of corversion between the textual and the stuc-

. tural representations of a class organization. The example chosen is class Benchmark

because its organization contains many categories."

Sp4%

N.
°,%,,



, ,., ..-. .'-. ... M- ..., - .. - .- ,- . - _- . . :. - - -, - . S -. . , , , , , .3

C 63

teutPrintDofi-idtn

"his benchmark measm how quickly a class definition, as it appears in the system

rowser, can be generated. TIe example chosen is an instance of class Compiler I- -

becaus it has a modere number of instance variables."

tautHPerarcH y

'Iis benchmark tmes the printing of a portion of the SmallaIk-80 class hierarchy.

The example chosen is class InstructionStream because it has sevral subclasse."

Lescompff

'"Ths benchmark measures the speed of the compiler on a slightly longer than normal

method, one containing 87 tokens and compiling into 73 bytecodes."

"This benchmark measures the speed of the Dec-npiler by decompiling all the

methods in class InputSensor."'

In addition, we used a few micro-benchmarks to evaluate an upper bound for the perfor-

metne impact of specific features:

tesPopStorelostVar '

"Mis benchmark measures how quickly a value can be popped off the stack and

saod in an instance variable of the receiver. Because this value is the SmallInteger

1, thedn is little reference counting overhead on the push or store. 50% of the bytes in

the block awe l6r60,* a pop of the top of the stack into the receiver's first instance van-

able."

tuast3phuu4 r't

"This benchmark measures the speed of SmallInteger addition. Because all values
.,,.',

am Smallntegers. there is little refenmce-counting overhead. 25% of the bytes in the

block are 16rBO.* a quick send of the message ."

. %.

%..



64

testActivationReturn

""is very important benchmark uses a call on a doubly-recursive method to measure 'A

the speed of method activation and return. There is little reference-counting overhead

associated with knowing when to end die recursion, but there may be a great deal in

managing the Contexts that represent the activations. About 12.5% of the bytes exe-
'.4-.

cuted during this benchmark am 16rEO,* a send of the method's first literal (in thisI.

case, the Symbol recur.), and about 12.5% am returns, split evenly between 16r78,* a

quick return of the receiver, and 16r7C,* a return of the value on the top of the stack."

How representative are these five macro-benchmarks? Xerox rates the performance of -'

Smalltalk-80 systems relative to the Dorado by taking the mean of the 13 macro-benchmarks

plus the text scanning and BitBlt micro-benchmarks [Bay84]. Table 4.1 below compares the

compiler benchmark, the median of the five macro-benchmarks used here, and the Xerox

performance rating for four other Snultlk-80 systems. The data suggest tat the bench- -"

marks we used slightly underestimate overall performance.
'A,'

We have not considered the interaction between the availability of hardware features "

and the sophistication of the optimizations performed by the compiler. The only compiler
.pt..

Table 4.1: Comparison of Performance Metrics. "_ _

median of

classOrganizer Xerox
compiler compiler Performance

decompiler Rating
-A., printDefinition

printHierarchy _.____

Berkeley Smallmlk on Sun 2 [Bay84] 11% 11% 14%
Tektronix 4404 [BayS4l 25% 25% 26%
Xerox PS on Sun 2 [Bay85] 31% 41% 44%
Xerox P5 on Sun 3 [Bay85] 80% 99% 109%
Xerox Dorado 100% 100% 100%
SOAR (simulated 0 400 ns) 103% 107% _ _

-, .. -Pef. andciinumbs. Fo exu.. r7C is 124.



65

changes we have taken into account an those required to simulathe missing hardware. %

For example, to compute the overhead of software type checking, we counted the number of

times that hardware type checking was performed by code from the current compiler and

multipled that count by the cost of a software check. It is possible that a Smalltalk-80 com-

pier for a machine without hardware support for type checking would reduce the overhead

with a data-Sow analysis to eliminate redundant type checking. However, such techniques

are not used in existing Smalitalk-O compilers, which must cope with dynamic type bind-

ing. The performance measurements in this dissertation hold only for Smalitalk-SO systems

with state-of-the-art compiler technology.

4.2. Overall Performance: SOAR vs Dorado

Can SOAR provide acceptable performance with a single-chip processor? The Dorado

is the only Smallialk-0 system that everyone agrees is fast .,otigh. If SOAR can run as fast

• " as a Dorado, it will certainly provide a usable Smalltalk-80 system. (The Xerox MC68020 -."

Smallalk-80 system is also approaching the Dorado's performance.) Table 4.2 compares
.4 

SOAR's performance to the Dorado on five macro-benchmarks and the procedure call
,".,,"

micro-benhmark. The Dorado numbers were obtained from Xerox's Smalitalk-80

Newsletter [BayS4]. The SOAR numbers were obtained by simulating the benchmarks for

two iterations, taking the number of cycles for the second iteration,* and multiplying by 400

ust, our measured cycle time for the 4pa chips. These data show that a 400 ns SOAR will

perform well enough to please everyone who already uses Smalltalk-80.

We onmidr the mgd mmsI mbe sa mamrmerasv.. Had we ued do aeben for the AM imatmon. imtial sub-

Mioim oekup would have slowed the benchawks down by up to 10%.
4 3oIamsm Ilabh with to fast shal (Secm 3.4.3) will prevnt ful spud opesaton unems bt momn cv-

cle mmcm ca bed by 100 ma oer d chp cvcl time. Malnaively. thu fast shuffl, sinal cm be ignomd, and d chip
could maa ad bmch mactasumca IPmIS.a).

a. *''_ 4-

I.- _.

_%,"

,4 
, w



Benchmark Cycles/i.r # iter SOAR Dorado SOAR-

(secs) (sacs) relative ._.

666

to Dorado

astActivationRetm 483694 1 0.193 0.996 515% V-

astclssOrganiur 3206197- 1 1.28 1207 94%-'
a~stcompiae 1095039 $ 2.19 2256 103% •--
teompiler 289359% 1 1.16 1.243 107%

•eszPrinDefininion 74159 20 0.593 0.849 143%

stePrint]ierarcby 117595 10 0.470 1.000 213% 1__

min 94%
Mediani 107%
max 213%

43. Relative Performance of SOAR Z.,

In the previous section, we showed that SOAR will run as fast as a Dorado. How does

this compare to other Smallzak-80 systems? Table 4.3 compares the performance of the

compiler benchmark on several Smalltalk-80 systems. Both SOAR and the 68010 are

NMOS microprocessors, although the 68010 has almost twice as many trasistors as SOAR:

68,000 vs. 35,700. Since Deutsch and Schiffman's ST68K is also a compiled implementa-

tin DeS84], it serves as the fairest architectural comparison to SOAR. Unlike the ST68K

code translator, the current SOAR compiler generates unnecessary instructions (see Table

2.11); a better compiler would improve SOAR's performance. By creating a custom proces-

sot, we have more than doubled performance, while halving the number of transistors.

Table 4.3: Compiler Benchmark speed for various Smailtalk-80 systems.
Speed relative to Dorado, larger is faster.

host instruction execution speed
processor time (ns) model

BS UCB 68010 400 interpreter 11%
Tek 4404 Tektroni 68010 400 interpreter 25%
ekPS Xerox 68010 400 compiler 40%

PS Xerox 68020 10 compiler 80%
Dorado Xerox Dorado 70 microcode 1009%

N or

SOAR UCB SOAR 400 compiler 103%

lb. cycle tima Is) a for s mi attoo that a found us the on.chip c€cbe. and 270 as for on that is not.

4--* % E, *.*"" "'e"" "" "" "" " ""



67

4. Evaluating Individual Features

.. ..'

Although SOAR's design was driven by empirical results, our experimental subject at _--

that time was a bytecode interpreter, not a SOAR simulator. Now that we have a compiler,

simulator, and run-time support software for SOAR, we have been able perform an accurate

assessment its features (Table 4.4). (Appendix A contains detailed derivations of the data.)

Each row gives the featum's name, the minimum, average, and maximum effect it would

have oan speed were it omitted or added, and the effect it would have on total memory size.

For example, the tagged integer support is described in Section 32.. If left out of SOAR, and

if the compiler were unchanged, the macro-benchmarks we simulated would take from 14%

to 47% longer to run, with an average time penalty of 26%. The SOAR Smaltalk-80 virtual

image would grow by 15% from its 1.5 M. Remember that (except for rearranging the

pipeline) our performance figures count cycles and neglect the interaction between architec-

are and cycle time. For a discussion of cycle time effects, see Pendleton's dissertation .% .4

IPen8bI.

Table 4.4 above groups the features in the order that they were presented in the last

chapter. In Table 4.5, we have reordered them by avenage performance impact and added

Pendleton's complexity results in order to identify winner and losers. The complexity index

:'I. ',combines the number of diagnostics, circuit blocks, and hand-drawn transistors required for

a feature. For example, the most complicated feature, multiple on -chip register windows,

has an index of 10.

The importance of register windows on SOAR stems from an important feature of the.0

Smallalk-80 system, fast compilation. Like some other exploratory programming environ-

ments. the Smalltalk-80 system achieves split-second compilation times by compiling each

procedure by itself; there e no macros. interprocedural analysis, nor static interprcedural

binding. "hus, the compiler runs fast because it has shed the burden of binding or optimiz-

ing subroutine calls. This results in a high frequency of subroutine calls, which forces V\.

% q',7%7



* 68

Table 4.4 SuMEMr of fetures; and performance impacts."'
feature section in slowdown if omitted expansion

dissertation if omined*

best average worstI;cas can~l j 1% ~ 2
Wyp checking

tagdiwes3.2.1 114% 26% 47% 15%
two-ltomistrcdons 3.2.3 i13% 16% 2D% 19%

tagd riseas 3.2.4 7.01% 0.04% 1% 0.%

beis/r winowcs 37.1 2.% 33% 6% 6.1
Ioadm/toe 3.3.1 0.39% 3.46% 1.1% 20%

rn-linstrcaions 3.4.2 2% 3% 5.0% -2.2%
sadot s egistee 3.4.2 9.01% 0.% 1% 0
parallel trllps 3.3.4 1.7% 4.3% 4.7% 0.%

genertiosegn 3.4.1 37% 10% 15% 1%
lodireconer 3.5.1 135% 22% 291% 2.0%
ge-lnei ca ha wr 3.4.2 2% 133% 30% 21.9%

Poarall egisterin 3.4.4 0.75% 43% 7.3% 1.30

implementation
forwarding 3.6.3 12% 15% 18%0
new feature scinispeuifaddcompaction

dissedomnif added*

worst avrage bes

case ca3e
compre-nd-ranc 322 21% 26% .o%1.0

instntaeou cal lokup3.42 IA. ~ a. 23%1.2%

7. rearranged pipeline [P_____gb_ 3.6.3 20% 21% 22%__ 1 0

everdosincude th ol "odd o~ ode whn toseare utratd out. the image asia "t to 1409 kB. Since we do
so y Itow hethr o no we ill" O broade obecde. we have chosen to uae the (two signfican figur) average%

rafaceousingsee5.6 ad iininndaam refevence couning (see 5.6. 1). mpecUvely.
T Pedlembesdiacovered dim SOARs aiplemnentation of this feature lenthened itu cycle Unat by -25%a.



69

Table 4.J: Features in order of performance impact.
(Except for rearranged pipeline, excludes impact on cycle time.) %

feature slowdown expansion complexity -%-,
if omitted if omitted [Pen8Sb]

winners

compilation -100% -33% 0 " Jh
register windows 46% 6.1% 10.0
in-line cache 33% -1.2% 1.3 ...
byte insertlexutact insactions 33% 0 4.0
taged intagert 26% 15% 4.6
direct pointrs* 22% 2.3% 0

two-tone inmuctionst 16% 19% na.
generation scavengingt- 10* 16% 0
forwarding 15% 0 4.0
fast shufftet 11% 0 0.8
tagged immediatest 9.6% 1.2% 0.9

par0lel hilling 4.3% 1.3% 2.5 .-.","
tp insiritin 3.9% 2.0% 1.7 - -

%Ioadmn/stomm* 3.4% 2.0% 1.6 "."

pontmr-to-regisser 3.1% 0 4.4
vectored naps 2.9% 0 1.4aa.a .-.

generation tag hardwaet 1.3% 2.9% 2.3
losers

loadc 0.46% 0 0
shadow registers 0.04% 0 3.2
sll 0 0 0
feature speedup compaction .

if added if added
winners

call mrge lookup hardware <23% 1.2%
rearranged pipeline [Pu85b] 21% 0
loadtstore byte 7.0% 0

losers
multiply/divide 3.2% 0
compare-and-branch 2.6% 1.3% ..*. .:..
one cycle naps 0.63% 0
barrel shifter 0.37% 0

R eItea windows. load. ad or.multiple. and poir-to-rgister all interact. For example, without register win.
dows. l. and stom-omaltple would become much more imponrtat. and pou.sro-eguur would be complety silly.

+. Tagged intger intructions. two-ltonue in m. tagged amdites and genera tag hadware om iun .eractionsmu
In comiderd. For example. oce tested integer trmuucuofs am elinunatad. the penaty for elinsuang twotom nmcuons .. . r

41 beomes am,.
." $ITW smiductn om wanertioa Scavngmg allowed us to exploit direct poiNter.

3. w ?Pendleton bas discoveredwi SOAR's imlementation of this feature lengthened the cycle tim by -251b, See Section
PO 3.4.3.

'3 4 N...I

-% "o'o"



70

hardware to shoulder the responsibility for efficient execution of calls. This explains why

register windows are so effective for SOAR. Although they add the most complexity of any

feature [P eBbJ, SOAR would run 46% slower without thm

roe data suggest that we could simplify SOAR without sacrificing much performance.

If we removed all but the winning features, SOAR would only take 19% more time and 8%

momre mory. Adding Penidleton's pipeline rearrangement would then result in a simpler

design with the same performance as the original. If we were to include mom features, they ."

might be trap inuctons, loadm/storem, and vectored trps. Such a design would be 11% .

faster than SOAR. and use only 4% more memory. .r..

Four of the features in SOAR an mistakes: parallel illing, pointer-to-register, genera-

tion tag hardware, and shadow registers.* Although fully awar of it, we still fell into what

* a.'.

we now call the "architect's trap" at least four times: a--

* Each mistake was a clever idea;

"!Each made a particular operation much faster,

is * Each increased design and simulation time; "

Not one significantly improved overall performance.

Another way to appreciat the worthlessness of these four features is that load/store byte

instructions would save mome cycles than these four put together.

,4%

We have put these results to use by calculating the performance of some variations on

SOAR and comparing them to some real systems (Table 4.6). Our predictions of SOAR's

performance an based on simulated macro-benchmark times and do not include virtual

memory. operating system, and IO overhead. However, all of the Smalltalk-80 systems we

A4 know about tend to be compute-bound for program developmenL For a fair comparison, we .

*.we



71

assum a 400 us cycle time for SOAR, RISC I, and MC68010.

By comparing he speeds of different systems, we can gain some insight into the ma-

sans for SOAR's good performance:

The speed ratio of full SOAR to RISC IU, 1.6 is the same as the ratio of RISC U to the

Xeo 68010 system. This indicates that the reduced instrcton set architecture

(including register windows) and the Smalltalk-specific hardware features contribute

equally to perf-mance.

Interestngly, the Deutsch-Schiffman 68010 compiled system is a bit better than the

estimate for SOAR with only the software ideas. Perhaps the optimizations in

Deutsch's compiler account for the difference.

Since the Tektronix system neither compiles nor scavenges, its software resembles a

stripped SOAR. Thus, the similar performance of the Tek system to stripped SOAR
suggests that the stripped SOAR hardware performs as well as the MC680 10.

The simplicity and high performance of eliminating all but the winning features and rear-

ranging SOAR's pipeline make this an appealing design.

Table 4.6: Trimming the Fat from SOAR.
(As=w, 400 ,u cycle me for SOAR, RISC 11, and 680)0)

configuation speed image size
winners only + rearranged pipeline 103% 108%
full SOAR 100% 100% * .

Dormdo 97%
winners only 81% 108%
RISC D 62% 126%
full SOAR without software ideas 41% 84%
Xerox 68010 compiler 39%
full SOAR without hardware ideas 34%* 132%
Tek 68010 intepreter 24% i_
stripped SOAR 22% 133%

S 1pm Spaus m -ddm= 36* UM paWly for l s both windon md IomitoM.,

-- • . "a ' J.4
". ' 'a. 4" J'- ' ¢" ' • " e o" - . .e .e " . s . ." . : .- - . .. '- . . - , ,, . ., .- '. /. ,- .. . .. .. . . .. - .- ,- - . ". "*.



72

4.5. C..elus..l,._.s

SOAR's hardwars and software design represents an advance for object-oriented

expeuimental Programm---ng enionents. SOAR has almost half of the transistous of the

611010, yet runs Smalltalk-80 2.5 times faster. Registr windows, tagged integer inswic-

dons, direct pointem and generation scavenging account for most of the difference. These

four ideas reprsent SOAR's most important contribution to EPE systems.

Our analysis of a feature's value was based on counting cycles. Barring the pipeline

rearrangement, we ignored the effect of adding a feature on the cycle time (se [Pcn8Sb]).

In fact, some of the features we added to the machine must have pervmely increased the

cycle tim enough to offset the reduction in cycles, thereby slowing down de system. In

particular, the hardware support for automatic storage reclamation probably did not speed up

SOAR. Other examples of mistakes in SOAR are the inclusion of parallel register niling, ,...,

logic to support pointers to registers, and shadow registers to aid trap handling. We observe

that the inclusion of interesting features that complicate de design but do not improve the

performance of represarative programs is a trap that many architects fall pray to, including

us.*

There are four places to look for further performance gains: compiler technology (out-

side the scope of this dissertation), implementation technology (see [Pen85b]), optimization

of the mn-time support primitives (which consume about two thirds of SOAR's time), and

beter hardware or software algorithms to cache call target lookups (which consume 23% of

SOAR's time). Of these, implementation technology - circuit design and VLSI processing N

technology - have the most dramatic impact Since we started this project, the standard

VLSI technology available to univenities has improved from 4A line widths to 3p. This one

change should reduce our cycle time from 400 ns to 290 ns, as important a conribution as . ,.

oPeads has dlscovsmd tu SOAR's impheumam of d FM Sihmle mcmu a 253 psosky w the cl ua ue-
*0a40 as~ nome.y eriw (SOCUoe 3A)). UbS dwarfs the achieturml baorstt of So 11% reim te 10fMbW *( cycles.
h im came h culprit was row failme to sidm the mmoa sysm aoqi with chip.

% m% %

% ,.,.



rgist" windows. Another example is Pendleton's pipeline rearrangement which could

improve performance by 21 %. This is more than the combined effect of parallel nilling, tap

instuctions, loadrnmstorem, pointer-to-register, vectored traps, and generation tag-checking

hardware.

A 70 ns ECL Dorado is the only existing machine that runs Smailtalk-SO fast enough

to saisfy everyone, and the 400 ns NMOS SOAR chips that have been fabricated should run

just as fast. Thus, SOAR will support the Smalltalk-80 system with excellent performance.

.-

S.1'

le%-ez,

a.

*. . 0

_,.-.
;.".

* .

.-

," ,..'. ,,

q -d

S- 5 .. .,**m

.. ..."..-..-.. ." .".. ." .-.. ." .'.".. ." ."," : . .".".. .. .'... ." .".:.,'... ." ." " .'.',.. ." .".. .'.,. .. -" ...",. , .".. " 'SX



74

Chapter 5 4.4-

Non-Disruptive High Performance Storage Reclamation
tV,

Throw back the little ones
and pan fry the big ones;
use tact, poise and mason
and gently squeeze them.

Steely Dan, .
"Throw Back the Little Ones"
[BeF74]

5.1. Introduction .is-

Early in the SOAR project, we realized that automatic storage reclamation could easily

become a bottleneck. We knew the overhead for allocation and freing in Smalltalk-80 sys- ,4%

ams ranged from 10% to 15% [DeS84,UnP83], that some reclamation algorithms iuno-

duced annoying pauses, that some required the programmer to explicitly free circular sauc-

ams of objects, and that most of the algorithms required microcode support. Since we ._

needed to attain good peformance in a system without microcode we have designed, imple-

menmd, and measured Genration Scavenging, a new garbage collector that

l iimim pause times to a fraction of a second,

* requires no hardware support,

* meshes well with virtual memory, '

• reclaims circular stactures, and

* uses only 3% of the CPU time in SOAR. This is less than a third of the time of

deferred reference counting, the next best algorithm*

apernsrwm wft SOAR has made ae di n a of te oWir algmithU that m usually icrcoded nemd not be.
Al mumour olig -a I for Ieahm Ig farm new algorthm proved to be unfounded, we found bomething tat ejoys solid _
advsues is a fbifoflce ad thi aility to recim. czwuiar strue.

J-4

r'5 _n, 1

V. -

% .0.



VI %7 ---- I 7W--LIl "W- -C

75

This section descnbes the challenge of providing automatic storage reclamation, sur-

veys some popular algoridm and presents our solution. It concludes by evaluating the per-

fornance of Genermtion Scavenging, based n runing the Smaltalk-80 benchmarks

[McC83I an BS and simulating them on SOAR. An earlier and shorter version of this

chapter appeared in [UnS4].

5.2. The Relationship Between Virtual Memory and Storage Reclamation

The storage manager must ensure an ample supply of virtual addresses for new objects, %

and must maintain a working set of existing objects in physical memory. Traditionally, the

functions have been separated into two parts as shown in Table 5.1 and Figure 5.1.

Sometimes the distinction between virtual memory and automatic reclamation can lead

to ineficiency or redundant functionality. For example, some garbage collection (GC) algo-

rithms require that an object be in main memory when it is freed; this may cause ext back-

ing as- a operations. As another example, both compaction and virtual memory make room

for new objects by moving old ones. Thus storage reclamation algorithms and virtual

memory strategies must be designed to accommodate each other's needs.

Table 5.1: Traditional decomposition of sto e manaement.
name Ibfity pitfall

i virtual memory fecthing data from disk thrashing .
auto reclmation recycling address space distracting pauses to GC

primay mnmy seco sto ge

allocated allocte,,-.-"

viltu - -- - automaticKumumic "mr red c -'

Figure SJ: Virrual memory vs. auomanc storage reclanmon.

%*,t

A.

: .q _ , % t'" "''d'"P e" '4"" " "Ya-' .#"% "J' ' ''. %,,'4',r.'" 'J'J".e" '.
'.

.% . . 4".€.,7.#.'""" " " '""' :%.? .. .. r - . ,p,,... . ,.'" "''" " " " "'' ""% % "' % " % ' ' -- ' ., , 5'...'



N '76

.3. Personal Computers Must Be Responsive

Personal computers differ ftc. time-sharing systems. For example. with personal

computers there are no other users to blame for distacting pauses. Yet personal machines

have am available for periodic offline rasks, for even the most fanatic hackas sleep occa-

sionally. Personal computers promise consistendy short response times which am known to

boost productivity significandy (Tha8 11.

5.4. Virtual Memory for Advanced Personal Computers

Computers with fast, random access secondary storage can exploit program locality to

manage main memory for the programmer. Advanced personal computer systems manage

memory in many small chunks, or objects. The Symbolics ZLISP, Cedar-Mesa, Smalltalk-

80, and Inerlisp-D systems are examples. Table 5.2 summarizes segmentation and paging,

the two virtual memory techniques.

4.1. Sepentation

A segmented virtual memory enjoys the flexibility of placing each object in physical

memory independently of the other objects. This packing efiiency can result in better use

of main memory and a reduction in time-consuming backing store operations. However, ,".

segmentation's performance advantage disappears when main memory becomes more plen-

Table 5.2: Segmentation vs. Paging.
segmentaton paging

chunk size (bytes) 16 to 65,384 512. 1024, 2048, or 4096
# address space subdivisions 8-65,384 128 - 65,384
translation map associative direct or associative -

space overhead disk buffers unused portions of pages
time overhead copying from buffers offline reorganization*
firs implemented B 5000 (1961)[LoK6I] Adas (1962)[KEL62-
current example Intel iAPX-286 VAX-I I

Whil is Am pagi* SmWtaik sysem to employ offime moqaniooa of thu vmul spec (]a3d]. object
sw*pmo symm e sg wihO did wmnamzimm ruplari' (InI83J.* , .



77 (

Uful [Sta82, StaS4]. Moreover, the variety and quantity of objects in advanced personal

computer system pose tough challenges for a segmented vuW memory. In our I,

Smalltalk-80 memory image. for example. the length of an object can vary from 24 bytes

(points), to 128,000 bytes (bitmaps), with a mean of about 50. Suppose segmentation alone

is used. When an object is created or swapped in, a piece of main manmy as large as the

object must be found to hold it. Thus, a few large bitmaps can crowd out many smaller but

more frequently referenced objects.

When objects ae small, it takes many of them to accomplish anything. Smalltalk-80 ON,

Systems already contain 32,000 to 64,000 objects, and this number is increasing. A seg- '

meated memory with this many segments requires either a prohibitively large or a

conant-addressble segment table.+ This large number hampers address translation.

S.4.2. Demand Paging

The simplicity of page table hardware and the oppornity to hide the address transla-

tio ame make paging atactive to hardware designers [Den70]. Paging, however, is not a

panacea for advanced personal computers. It can squander main memory by dispersing fre-

quently referenced small objects ovr many pages. Blau has shown that periodic offline

reorganization can prevent this disaster [Bla83d]. The daily idle time of a personal computer

can be used to repack objects onto pages.

3% Many objects in advanced personal computers live only a short time. The paging

_ literure contains little about strategies for such objects. Since their lifetimes are shorter

than the time to access backing store, these objects should never be paged out. By segregat-

ing short-lived objects from permanent ones, Generation Scavenging permits them to be

locked in main memory. Table 5.3 summarizes the obstacles that advanced personal com-

. The OOZE vismal memory sstem for Smallt-76 solved s problem but ucusud other costs: it wa li=Wed to 65K
thjec. Sa object table required a hub prob for evry object access. ad a disk maca was neeed to cew a sw wmp "s

objct If is pomu ws nt a flm htt ldto36.

NSI V * 
% 

I4_4



78 

puters pose for a paged virtual memory, and the solutions that SOAR has adopted. BS and

the DEC VAX/Smalltik-80 system [BaS83] use paging.

SA£ Automatic Storage Reclamation for Advanced Personal Computers

Advanced personal computers depend on efficient automatic storage reclamation. For

example, Berkeley Smalltalk allocates a new object every 80 instructions. This is consistent 7A,;

with Poderaro's results for a few voracious Lisp programs IFoPSI]. Since the total size of

the system was in an equilibrium for these measurements, the reclamation rate must match

die allocation mt. The mean dynamic object size is 70 bytes long. Thus, seven bits must

be reclaimed for every instuction executed.

Let's examine several garbage collection algorithms and evaluate their suitability for "

advanced personal computers. Where possible, we use performance figures from actual.., -

implementation of these algorithms. The Xeox Dorado Smallalk-80 system is closest to

an advanced personal computer, when we try to compare results we shall normalize to that

speed. For example, the bandwidth imposed on the BS storage allocator is

70 xyt, 1 Object 9000 by0ecods-bvt ,

I object 80 insmactions second second

If we scale this up to the speed of the Xerox Dorado system, the storage allocation rat

exceeds 100 KB/s.

Jon L. White was one of te first researchers to exploit the overlap between the func-

dons of virtual memory and garbage collection, and he proposed that address space reclama-

tion was obsolete in a virtual memory system [Whi8O]. He pointed out that as long as ..

Table 5.3: PaIng.

problem description SOAR solution
internal fragmentation I object per page offline reorganization
paing short-lived objects page faults for dead objects segregation by age,

pagg don't page new ones

: ' % * -'

,4 -



"79

refere ad objets were compacted into main memory, dead objects would be paged out to

backing store. This srategy may have adequate performance as far as CPU tim and main

memory utilization, but it demands too much from the backing store in a Smalltalk-80 sys-

m- Even if a 100 MB backing store could keep up with the 100 KB/sec allocation

bandwidth it would fill up in less than an hour.

10015 / disk = 20 minutes. IUM

100/D wash / second
This is unacceptable. %

There an many automatic storage reclamation algorithms [Coh81], but they can be .

divided into two families: those that maintain reference counts and those that traverse and ow l,

mark live objects. In the next few sections, we examine several reclamation algorithms and

discuss their suitability for advanced personal computers.

5.6. Reclaiming Storage by Counting References

Reference counting was invented in 1960 1Co160] and has undergone many

refinements [Knu73, Sta80]. The cenral idea is to maintain a count of the pointers that

reference each object. If an object's reference count should fall to zero, the object is no

longer accessible and its space can be reclaimed (Figure 5.2).

5.6.1. Immediate Reference Counting

Immediate reference counting adjusts reference counts on every store instruction and

reclaims an object as soon as its count drops to zero. Both the Dorado Smalltalk-80 system

[GoR83] and LOOM [KaK83, Sta82, StaB4] reclaim space with this algorithm. Compaction

is handled separately and typally causes a pause of 1.3 seconds every I to 20 minutes on a

Sun 68010 workstation.

Counting references takes time. For each store, the old contents of the cell must be

mad so that its referent's count can be decremenred. and the new content's referent's count

~~~~T To.' e U!


go so

.*.

stock _

obj I obij2 ob3

Figure 5.2: Sundard reference cemnng. The standard reference counting algordlun sso- -

camtes a reference count with each object. An object is reclaimed when the count goes to
Uro. Object 3 is refeenced only by itself, and is thus garbage. Since its comn is nomero,
it cannot be reclaimed by a reference counting algoidn.d.

must be increased. This consumes 15% of the CPU time [Deu83b, UnP83]. When an

object's count diminishes to taro, the object must be scanned to decrement the counts of

einrything it references. TIhis recursive freeing consumes an additional 5% of execution

time [Deu82g, UnP83]. Thus, the total overhead for reference counting is about 20%. Thiis .

substantial overhead is acceptable for personal computers, but deferred reference counting .

and Generation Scavenging (discussed below) use much less.

R ference counting cannot reclaim cycles of unreachable objects. Even though the

whole cycle is unreachable, each object in it has a non-zero count. Deutsch [Deug3b]

believes that this limitation has hurt programming style on the Xerox Smaltalk-80 system

(which employs reference counts), and Lieberman [IUH83] has also stated that circular struc-

4 ares am becoming increasingly important for artificial intelligence applications. The advan-

tage of immediate reference counting is that it uses the least amount of memory for tern-

porary objects - about 15 KB when running the Smalltalk-80 macro benchmarks. How-

ever, its inability to reclaim circular stactures remains a serous drawback for advanced per-

sonal computers.

%

S.L Deferred Reference Counting

The Deutsch-Bobrow deferred reference counting algorithm reduces the cost of main-

mining reference counts [DeB76]. Thre contemporary personal computer pogramming

environments use this algorithd Cedar Mesa, InterLisp-D (both on Dorados), and an experi- I

mentl Smallalk-8O system which furnished the performance mreasurments quoted herein

*. V
[DeS841. The Deutsch-Bobrow algoridun diminishes the time spent adjusting reference .

counts by ignoring refrences from local variables (Figure 53). These uncounted references

preclude reclamation during program execution. To free dead objects, the system periodi-

cally stops, and reconciles the counts with the uncounted references. On a typical personal

computer the algorithm requires 25 kB more space than immediate reference counting, and

averages 30 ms pauses every 500 ms.

-, Baden's measurements of a Smalltalk-80 system suggest that this method saves 90%

of the reference count manipulation needed for immediate reference counting [Bad82].

Deferredreferce counting spends about 3% of the to CPU time manipulating reference

counts. 3% for periodic rncwiliation, and 5% for recursive freeing. Thus, deferred refer- .
X

awce counting uses about half the-time of simple reference counting. 4-

stack

'; Filv -p 53: Derve refrence counting. The deferred refermce counting algorithmn does .

:. ~no cmount references to objects from the execution stack A zero count does 9ot ensure that")

~an object is reclaimable; it may sll have references from the stack

e •

s2

What would be the space cost for deferred reference counting on SOAR? The most

efficient representation of a reference count on SOAR would be one word per count. Table

5.4 shows the code sequence for reference countng on SOAR. Since this sequence is nine

words long, we can multiply the number of tagged stores by nine to compute the code over-

head for reference counng on SOAR (Table 5.5). This calculation shows that a strighfor- *1'

ward implementation of deferred reference counting would increase the image size by 16%.*

Although more efficient than immediate reference counting, deferred reference count-

ing still does not reclaim circular structres. This is its biggest drawback.

5.7. Reclaiming Storage by Finding Reachable Objects

Marking reclamation algorithms collect garbage by first traversing and marking reach-

able objects and then reclaiming the space filled by unmarked objects. Unlike reference
counting. these algorithms reclaim circular structures.

Table 5.4: Reference counting sequence on SOAR.
%load (storeObj)offset, oldContents , ,1
Iload (oldContens)countOffse, oldRC / tag trap handles int case r%
lbskip eq oldRC, I
%call feRoutine I

1 %sub oldRC, 1, oldRC
%storc oldRC, (oldContens)countOffset
load (newContens)countOffsm newRC
%add newRC, 1, newRC
%'store newRC, (newConent)counrOffset

Table 5.5: Static cost for reference counting on SOAR.
number of tagged store instnicuons 3578
mean object length 14 words
total size of image 1,500 kB . .
relative space cost of code 8.59%
relative space cost of counts 7.14%
total space cost 15.73%

The ne requied to nilp-law eference coma an smrns is the amr to adjust a comm, pditape 25 cyclh ttn the
" fhqpeacy of tagged sum istucuoans. or 0.36% (Table A.7). dweded by the average cycles per iamucue. or I.S. Thu gives

SWSS"am r of 6%. If recomcilsbon afds mother'.'. we obtaina toui of 8%, which is comist with Deah's =,,we-

HI;4
10-

83

.. Mark and Sweep

The first marking storage reclamation algorithm, mark and sweep, was inuoduced in ..

1960 [McC60. It has many variations ICob8I, Knu73, SSO], and is used in contemporary

systems [FoF8 1]. After marking reachable objects, the mark and sweep algorithms reclaim

aem object at a time, by sweeping the entire address space. Famnan has found that some

Franz Lisp programs spend 25% to 40% of their time marking and sweeping [at83J and

require about 1.9 mB for dynamic objects (compared to about I mB for static objects). N-N

These algorithms are inefficient because they access a large number of objects; the marking __.
.' .,,1

phase inspects all live objects, and the sweeping phase modifies all dead ones.
.%..

The mrking phase inspects every live object and thereby causes backing store opera-

ions.* Foderaro found that for some LISP programs, hints to the virnual memory system

could reduce the number of page faults for a mark and sweep from 120 to 90 [FoFS I]. Even

with hints, marking and sweeping with paging causes on average a 4.5 second pause every II
79 seconds. This is unacceptable for an interactive personal computer.

5.7.2. Scavenging Live Objects

The costly phase of sweeping dead objects can be eliminated by moving the live

objects to a new area, a technique called scavenging. A scavenge is a breadth-first traversal ,$

of reachable objects. After a scavenge, the former area is free, so that new objects can be

allocated from its base. In addition to the performance savings, a scavenging reclaimer also
•, =

compacts, obviating a separate compaction pass. Scavenging algorithms must also update

pointers to the relocated objects.

Automatic storage reclamation algorithms that scavenge include Baker's semispace
.

algorithm [Bak77], mallard's algorithm [BaS83]. Generation Garbage Collection [LiH83],

and Generation Scavenging. Baker's algorithm divides memory into two spaces and --

Tbe sweeppbm e Wmqs beckiol $Me opfaboes. bu n quental ame accommodams pmfewhg.

Ad%

:Mzse'. * , .

-J ,' • w * , # * e" ° r .re -- e ' " " u" J" . " ,, ,'e " '',' - .r J J J " ' ' ,, " ' . ." " . • • . "- % - . S .. %

-4.: -', -.- , .'.,,., /L,'. . -, L .. :,.e r _' r,. ,e r _v
2

e'-._.3, . ,_'t. ' _ - _, _._.

(84

scavengs all reachable object from Oe space to the other (Figure 5.4). Ballard imple- , U

mod this algorithm for his VAX/Smallalk-80 system and observed that many objects

were lon-lived. The addition of a separate area for these objects resulted in a substantal

performance improvement by eliminating the periodic copy of dm. Ballard's sysnem has

600 KB for static objecu, a 512 KB object table, and two 1 MB semispaces for dynamic

objecus. It spends only 7% of its time reclaiming storage, including sweeping the object i

table to reclaim entries. Since it is embedded in an interpretive system that runs

Smalltalk-80 programs a twelfth as fast as the Dorado (Table 2.2), the CPU overhead for this

algorithm may rise above 7% on a high-performance system.

Generation Garbage Collection [LiH831 exploits the observation that many young ,

objects die quickly and generalizes Baker's algorithm by segregating objects into genera-

tions, each within its own space (Figure 5.5). Each generation may be scavenged without

disturbing older ones, permitting younger generations to be scavenged more often. This Z"

reduces the time spent scavenging older, more stable objects. At presen. there are no pub-

fished performance data on this algorithm. '.%- %

The scavenging algorithms above incur hidden costs because they interleave scaveng-

ing with program execution. The key idea is to avoid pauses due to scavenging by subdivid-

ing die work and scavenging a few objects every time a new one is allocated. The problem

with mixing execution with reclamation is that the program may try to use a pointer to an

before scavenge after scavenge

- -. C

N;% %" .
Figure 5.4: Baker semispaces. The Baker storage reclamation algonthmn divides memnory

into seiispacas. When one fls up, the live obects in it ame copied to the other semnispace. .-

,.., .%

!419

_-___ _Nt.*.fJ-

85

gmeraion 0 generation I enramon 2

FiRe 53: Genwano. prle celi o. Generatoo gabage collecton is a geomaliz-
doo of Baker semispaces. This algorithm divides memory into many small smispace o-
per sgearamo.." When a semispace ls up. ks coments are scavenged to the next one.

object that has been scavenged to another ara This problem can be solved by checking all

loads and following the forwarding poimrs, but the solution in turn imposes additional

overhead on the running program. Thus, eliminating pauses slows execution.

Aigorthms that segregt objects into genrations must maintain tables of references

ftm older to younger objects. These algorithms save time by reclaiming space in younger

geneations without traversing older generations. The burden of maintaining thes tables

falls on some store instructions.

SA. The Generation Scavenging Automatic Storage Reclamation Algorithm

Genmdon Scavenging arose from our attempts find an eftient, unobtusive storage
./.

reclamation algorithm for SOAR that did not require microcode. Our test vehicle was N
I,-

Berkeley Smaltalk, which originally used reference counting. Measurements of BS object

lifetimes proved that young objects die young and old objects continue to live. We then

designed Generation Scavenging to exploit that behavior and substituted it for reference

counting in Berkeley Smalitalk. The result was an eight-fold reduction in the percentage of

time spent reclaiming storage - from 13% to 1.5%. In addition, the inu-insic compaction .. "

provided by scavenging made it possible to eliminate the Object Table and its accompanying

indirection. After eliminating the object table and reference counting, BS ran 1.7 times fas-

ur than before. In addition to the performance improvement, since Genetion Scavenging

was not based on refe rce counting. it was able to reclaim cycles of unreachable data stuc-

alres. -A'-

0
%,'-.-

.'',-

6

SLL Overview of Generation Scavenging Algorithm

Each object is classified as either new or old. Old objects reside in a region of memory . -

called the old area. All old objects that reference new ones are members of the remembered

aqt. Objects re added to this set as a side effect of store instumctions. (This checking is not

required for stores into local variables because suck frames are always new.) Objects that no

lonag refer to new objects an deleted from the remembered set during scavenging. All new

objects that a referenced must be reachable directly from the old objects in the remem-

bered set, or through a chain of new objects ultimately linked to the remembered set. Tlhus, 4-

?%"a traversa in new space, starting at the remembered set (and virtual machine registrs) can.. .j
find all live new objects. Table 5.6 summarizes the characteristics of the two generations for

(andraio Scavecngeiegsngs)ca

Time are three areas for new objects (Figure 5.6): '.'".-

* NewSpace, a large area where new objects are created,

PasrSuwvivorSpace, which holds new objects that have survived previous scavenges,

and .'.'.

*FwwueSw-vivorSpace, which is used only during scavenging.

A scavenge moves live new objects from NewSpace and PastSurvivorSpace to FutuneSur-"*.. ",'
t .e

vivorSpace, then intrchanges Past and FutureSurvivorSpace. At this point, no live objects

Table 5.6: Generations in Generation Scavenging for BS.
contents volatile objects permanent objects
residence new space old space
space size 200 KB* 940 KB
location main memory demand paged
created by instantiation ienuring
reclaimed by scavenging mark-and-sweep
reclaimed every 16 sec 3-Ih"
reclamation takes 0.16 sec 5 min

140 K3 for Nm am •2 "21KD for sn..

%, -12

87

are left in NewSpace, and it can be reused to create more objects. The scavenge incurs a %,,,

space cost of only one bit per object. -Ia time cost is propoional to the number of live new

objects and thus is small since only I i 20 objects survive a scavenge. If a new object sur-

vives enough scavenges, it mows to the old object area and is no longer subject to online

automatc mrclamtion. This promotion to old status is called tenuriang. Figure 5.7 depicts

bo& the old and new amas for Generation Scavenging.

L.8.2. Detailed Description of Generation Scavenging

Recall that the purpose of a scavenge is to transport the surviving new objects from

NewSpace and PastSurvivorSpace to PuuareSurvivorSpace. A one-pass bmadth-first algo-

rithm copies the objects and updates pointers to them as it goes along. It starts by searching

all the old objects in the Remembered set for pointers to new objects, which it copies to

FuturmSurvivorSpace. Then. it updates the pointer to point to the copy instead of the origi- 4'

nal, leaves another pointer to the copy in the first word of the original, and sets a flag bit .

indicate that the original has been moved. If the scavenging idgorithm encounters a refer-

0b

E objects created here

survivors of previous scavenge
scavenge objects to her

ODD obet cratd er

. scavenge o- h e n

I scavenge objects to heresurvIiors of previous scavenge q

Figure 5.6: Genewnean Scavenging's three areas for new objects. The largest area holds
newly-created objects (NewSpace). Two smaller ars alternately hold object that have :
survived previous scavenges tPasSurvivorSpoce) and receive objects copied by the current
scavenge (FutnreSurvivorSpace). This uobalanced division saves ummory over a ser-
ispse. algonds 4n

%%s.

)' " . " " " ," - "," . " . g V
"

" ," ,"," . ', , " •". " . ', ' . . , % , , , % ,.. . -. , %,' '. . - . ,,. - .% - .'. - . . ,

rob 0

objects created hen new oject

physical memory
scavenge objects to here P

survivors(scavenge -- c.

Promo t em I old objects"

= paged virtual memory

A

e, ugh scaveage,, it ia promood to the old object area, New objects an locird down in '"
physica memory, old objects resde inrual memory and may be paged out

. ame to the same object again, the Blag bit and forwarding pointer wiD emble it to detct that

the object has alredy been scavenged and to update the reference. After this firt pass all ,-

new objects refernced by old object have beeni scavenged. Now, the algorithm starts "

.. ~taversing Puture~urvivorSpace and scavenging any Dew objects mfremed from there. As %. .J, ,

point. rte algorithm ftuinates.

~In addition to preserving live objects, those objects that survive for a long time must be

%0

promoted into OlmSpace. 9 they were not. much time would be wasted copying and recopy-

S.te same objects back and forth. So. each object includes a count of die number of

'-

• I " ""I' N

scavenges it has survived. If this count should reach a certain threshold, the object gets

caVted to OldSpace instead of PutueSurvivorSpace. At this point, the object must be

added on to the end of the remembered set in case it contains any pointers to other new

objects. After completing a pus, the algorithm checks the remembered set. If it has grown, ,

the new port is scanned, which may add objects to the end of FutureSurvivorSpace. Then, if

futuSurvivorSpace has grown. the new portion of that m must be scanned, which may

add objects to the end of the remembered set. The final form of the algorithm thereore

resembles two corouines: one which searches the remembered set, and another which

searches Futtreurvivor~pace for pointers to new objects. This is easily implemented in C e",
with two subroutines called alternately in a loop. The loop terminates when one of the sub-

rouheescutes without ading mo r objects for the othe one to scan. in

We now present the Generation Scavenging algorithm top-down, in pidgin C:

smu space-
wordt OfirstWord; I start of space /-
int sie; /* number of used words in space /

sauct object f
int Sime, -

age;p

booleanisorw-d

union
sact object *contents[l,

OorwardingPoinr..

Sstmct space NewSpace, PastSurvivorSpace. FutureSurvivorSpace, OldSpace; 4

srumct object *RememberedSetContents[MaxRemembemd];
int RememberedSetSize;

: i g:

.

I' 90

'rThe main routine, generaaonScavenge, first scavenges the new
* Objects immediately reachable from old ones. Then it scavenges
* those that are transitively reachable. If thus results in
* a promotion, the promofee gets remembered, and it first

* no more reachable objects are left. At that point,
I PastSurvivorSpace is exchanged with FutureSurvivorSpace.

* Notice that each pointer in a live object is inspected once and
* only once. The previousRememberedSetSize and
* previousFutureSurvivorSpaceSize variables ensure that no object
* is scanned twice, as well as detecting closure. If this were
* not true, some pointers might get forwarded twice.

generationScavengeO ' -0 p..

while (TRUE)(
scavngeememere~ettartng~~pmvousemebemdet*ze)

if (previousfturtSurvivorSpaceSize -- FutureSurvivorSpace.size) p-

prevousememere~et~ze RememberedSetSize;
scavengeFutureSurvSpaceStartngAt(

previousFutureSurvivorSpace.size):
if (previousRememberedSetSize -m RememberedSetSize)

break;

previous~utureSurvivorSpaceSize -1-tmuvvrpc~ie

exchange(PastSurvivorSpace. Futueurv reSurvvoacsi

%.

% %

0,

91

* scavengeRCEUmmeed taringAt(n) traverses objects in the remembered
siet staring at the mh one. If the object does not refer to any new

objects. it is removed from the set. Otherwise, its new referents

ScawengeRemembereaestingAt(dest)

for (source -dest: source < RememberedSetSize; ++source)

RememberedSetConewnsdes..]

)eebrde~ntnssuc]
else

resetRememberedFlag(ReinemberedSeaContents[sourcej);
RomnemberedSetSize -dest;

* savnge~utureSurvSpaceSwrtngAt(n) does a depth-first _

truaversal of the new objects staring at dhe one at the nth word
* of FutuireSurvivorSpece.

scavengeFutumeSuvSpacStngAt(n)
int n;

smauct object *cuentObject;

while (n -c FutureSurvivorSpace.size)
scavengelkeferentsOf(

currentObject - FutureSurvivorSpace.flrstWordil);
n += size~fbject(currernObject))

- cavengekeferentsOftanObject) inspects all the pointers in mnObject.
* If any am new objects, it has them moved to FuimSurvivorSpace.
* and ratwias truth. If there are no new referents, it returns falsity.

'P ~~For simplicity hem an object is just an array ofpines

scavengelkeferentsMf(anObject)

orjc (i- ; ~nb jet-sie;i+)

reeren i;nbe~oner~]
iol=fo(isNew~referrent)

snitobet*reet

foonddNew~efereen - FALSE;

if (!isForwarded(referrent))
copyAnd~orwrdObJec(referent);

anObjecicontents[i] -referent->forwardingPointer,

reun(foundNewRefern~t); N

* copyAndForwardObject(obj) copies a new object either to
* FutureSurvivorSpace, or if it is to be promoted, to OldSpace. .

* I leaves a forwarding pointer behind.

copyAndForwardObject(oldLocation)
smauct object *oldLocation;

struct object *newLocation;
L

if (oldLocation->nobj age < MaxAge) I
+oldLocation->obj age,

P. newLocation a copyObjectToSpace(oldLocation,
FutureSurvivorSpace;;

else a

newLocation - copyObjectToSpace(oldLocation. OldSpace):

oldLocation->objforwardingPointer - new Location; P .

-A ~oldLocation->obj forwarded -- TRUE; *.l

How do old objects get reclamed? An offline reclamation program traverses and ".%%"

• P. -.

copies all objects in depth-first order to a file. This is a three-pass algorithm: The first pass

copies the live objects to a file and leaves forwarding pointers in the original objects. ae-d

second pass traverses the file and updates the pointers. The third pass reads the file into

memory, overwriting the original area. Copying rearranges the objects into depth-first order,

which helps to reduce the number of page faults [Bla83b, Blag3d, Sta82, StaB41. The whole

process takes a few minutes. If it is only required once or twice a day. it should not be too

disruptive. 'A..
5.8.3. Comparing Generation Scavenging to Other Scavenging Algorithms

Generation Scavenging most resembles Ballard's scheme [BaS831:

It segregates objects into young and old generations.

It copies live objects instead of sweeping dead objects.

It reclaims old objects offline.

Generation Scavenging differs from Ballard's Semispaces and Lieberman-Hewitt's Genera-

tion Garbage Collection [LiH83I. Unlike those algorithms, Generation Scavenging

0 conserves main memory by dividing new space into three spaces instead of two. '.

0 is not incremental. Instead, the small pauses introduced by Generation Scavenging are

unnoticeable in normal interactive sessions. (They are noticeable in real-time applica-

tions such as animation.) Incremental algorithms require checking on every load

instructon. and Generation Scavenging saves this time by not being incremental.

p..~
e

-p

.

(94

5I.ufrancEzvaluation of Generatwion Saveng~ing

How well does Generation Scavenging perform in Berkeley Smallalk and SOAR? We

concenrate on four met-ics:

. CPU time overhead, the CPU time spent reclaiming storage divided by the total CPU

time in the session.

" pause time, the time that the user must wait for reclamation;

* peak main memory usage, the amount of main memory that must be dedicated for tem-

4. porary objects, and

S backing store accesses, the number of times that the reclamation algorithm requires

data not present in main memory.

.9.1. Evaluating Generation Scavenging in Berkeley Smaltalk

The Smalltalk-80 macro benchmarks [McC83] consist of representative activities like

compiling and txt editing. We measured the performance of Generation Scavenging in BS

while running the benchmarks. Although our workstation had 2 MB of main memory,

only about half of that was available to Berkeley Smalitalk. Table 5.7 shows the results.

CPU Time Cost. Our measurements of BS show that Generation Scavenging requires ..

only 1.5% of the total (user CPU) time. This is four times better than its nearest competitor,

Baliard's modified semispaces, which takes about 7%.

One reason that Generation Scavenging looks so good is that BS executes programs

more slowly than some other Smalltalk-80 systems. However, the next section shows that

Gieneration Scavenging performs well on fast Smalltalk-80 systems.

Main Memory Consumption. Although each of the three new object areas occupies

140 KB of virtual memory (420 KB total), only 28 KB of each survivor area gets used. The V

4. rest serves as a reserve against pathological survival and need not be resident. Thus. the

. • . . , ,, - ..- -- *

95

Table 5.7: Performance of Generation Scavenging in BS._
toua misuctions execued - 4500 k
amount of storage reclaimed 3900 KB
amount of wound storage 9.1 KB
number of checked stores 190 k
number of remembered objects 320
number of scavenges 32
mean length of survivors 4.8 Kword
totw] user CPU time 280 sacs.
toul Real time 500 secs.
real time scavenging 1.8%
user time scavenging 1.5-
time checking stores 0.1%
max old space used 940 KB
max new space 140 KB
max survivor space 28 KB
tonl size 1800 KB
resident set size 930 KB
tornl page faults 61
mi pause time" 90 ms
median pause time* 150 ms
mean pause time" 160 ms
90th %ile pause time* 220 ms
max pause time* 33 ms
mean time between scavenges 16 seconds 4

vocal primary memory cost for dynamic objects is 200 KB, about 10% of the BS main

memory. If we used Baker semispaces with the same scavenging rate, each space would

need to be 140KB + 28KB, for a total of 360 KB, almost twice as much as Generation N

Scavenging. '

Backing Store Operations. Since new objects an always created in the same area,

they can remain in main memory. Unforawately. Unix on the Sun 68010 workstation (Sun

Release 2.0) does not implement the system cal that would lock down this area. Thus, the

firt six scavenges caused 283 minor page faults (page reclaims), and the rest of the

scavenges caused four. With a working set of 930 KB, 60 major page faults occurred during

the benchmarks.
__________a_______hich__________UniI w d h .-

Jk • €hd t fma .e~ wh~cb tmbec~s ar would bi ust lock down tis -e ma.--

-41

. o 'o
,,4 , .,. , . . . , . . " " , ,. " "" , ,_,.. ,..,. ""'''."-"-. . ,,, . '-"s","-" - x % ." -,,,.

W.--- -- - . WV W IMI W. W* F; I T- .4 -2FTW. T W W-k W-I - 1

96

Pauses. Except for the page faulting during the first six scavenges (see above), the

pauses were small and mostly unobtrusive, averging 150 Ms. The longest pause was only

330 ms. About 15% of the pause time was spent in the Unix kernel on unrelated overhead. ','

Since people have difficulty noticing pauses of 100 ms, this algorithm's performance meets

our requirements.

S.9.2. Evaluating Generatiou Scavenging on SOAR
%-..

The previous section shows that Generation Scavenging performs well in BS, requiring

fewer than 1.5% of the CPU cycles. How well will this algorithm perform on SOAR?

SOAR will run Smalltalk programs on times faster than 9S. This will result in tn tues " .'

more garbage c ead in the same amount of time, but, we would not expect Generation

Scavenging to run ten times faster an SOAR than in Berkeley Smalllk. If it ran at the

same speed. then the overhead for scavenging on SOAR would be tn times worse, or 15%.

In fact. as we show in Section 5.9, Generation Scavenging takes only about 2% of SOAR's

time. ~

S.2.1. SOAR Scavenge Duration

We have written Generation Scavenging in SOAR assembly language and simulated it

in the course of running the macro benchmarks. Table 5.8 gives measurements of 12 -".

scavenges, 9 from the decompiler benchmark, two from the printDefinition benchmark, and

one from the compiler benchmark. (See Chapter 4.1 for a description of the benchmarks.) %

As expected. the duration of a scavenge can be predicted from the number of words of new

objects that survive the scavenge. Figure 5.8 superimposes the observed data with a linear

regression. The regression predicts that the number of cycles for a scavenge is

24xsrvirnI -words +35W0 with a correlation coefficient r of 0.976. "';

The last column of Table 5.8 gives the duration, or pause time of each scavenge. ,.

assuming 400 ns per cycle. Despite identical cycle times. SOAR's mean scavenge time was

,' .%F.-,

d_4

r. . %- - - - %

97

Table S.8: Statistics on twelve scavenges simulated for SOAR.
T7e last column assumes a cycle time 0f 400 ns.

name of scavenp dam cycles scavenge,benchmark [tim savenged per time
m (cycles) (words) word (ms) V

1 decompiler 1 56,832 2,477 23 23
" 2 decompiler 45,832 2,028 23 19

3 decompiler 45,491 2,022 22 I 8
4 decompiler 41,262 1,828 23 17
5 decompiler 69,937 3,114 22 27
6 decompiler 37,449 1,692 22 15
7 decompiler 37,157 1,693 23 16
8 decompiler 30,100 1,489 20 12 ,
9 decompiler 29,228 1,489 20 12
10 printDefinition 1 63,417 2,542 25 25
11 printDefnition 53.535 2,587 21 22
12 compiler 60,374 2,834 21 24

ran 29,000 1,500 20 1 "f-
25%file 37,000 1,700 21 15
median 45,000 2,000 22 18
mean 48,000 2,200 22 19 .--.
(s.d.) (13,000) (540) (1.4) (5.0)
75% e 57,000 2,500 23 23
max 70,000 3,100 25 27

._9

%'.% I'.

...

a"..

ao._...

-?

-,.: ,;, ., - : .. , ,,...,... , ,.., ., .. - .-- .,, , .:.,. , , ,,,, ,,/ . .,,,..,,:,.:.. .. ,.-.-, ...-.. , ,..,-:....:..,- , . ..- ,.. / "... .. o .. -.

_ %,,r. . - ,', . ., .' . .*• . .,. . , .- , ,-.., ... ,*-,-, -. , -. , ...- ,-.-. . .

o% 4

(98

Scavenge duration as a function of words scavenged.
70-......

* .IN

...............................

d 5 0
.1',. 4

.d0

1 30 ". . .

..............

•r..?-a

1000 1SM 2000 2S00 3000 30

words scavenged '

Figure 5.8: Pretrial t ,,raon of a cavepnge, This grph shows that scavenge dura- •,

, 19 ms, eight times less than IRS's 160 ms. Tere are several possible explanations: l;

0 A SOAR chip receives 32 bits from memory every cycle whereas the 68010 is limited,-

to 1bis 1uthSORsystem has twice the memory bandwidth. %''

0 The simulated SOAR cavenging copied less data than the BS scavenges. The most

~~~likely explanation is activation records: BS keeps them in new space forcing each -

. ", . .-d

................................ . .;. ... ,;.,,,-, :.,,......, ., ......... , ,., ..... . . .,-.-,,. , ... .. ? :
.. ............. -... ',., ' . '-.I..............,..........._...... _. ,. ., ",, ,,z. .. . j.. j, . . .



99

scavenge to copy them. On de other hand, SOAR allocates activation records in a

separate stack that gets scanned rather than copied. The number show that the aver-

age BS scavenge copied 4.8 Kwords whereas the average SOAR scavenge copied only - '.

2.1 Kwords. This accounts for 2.3 times the work. -. 4%'

The above two explanations together account for a factor of 4.6, leaving a factor of 1.8 per-

foimance improvement to be explained by the next two differences (which ae harder to

quanify): 
-:

" Assembly code can be more efficient than C. Cne-aion Scavenng is writtn in

asemblr for SOAR and in C for BS. ".

" SOAR's architecture runs programs fed uan the 68010's In particular, th rduced

instruction set, register file, word addressing, fast shuffle, and tag checking hardware

might contribute to the performance improvement of scavenging in SOAR.

5.9.2. SOAR Scavenge Frequency

The worst SOAR scavenge took 27 ms. which is well below the threshold for an

annoying pause. However, if the time that a program could run between scavenge and the

next were too shorm, the 27 ms pause would still be unacceptable. The length of this gap

between pauses is determined by the creation rate for new objects and the by amount of .. .'m

memory available to hold them. To measure this interval, we ran six benchmarks on SOAR

and measured the rate of object creation during a (randomly chosen) portion of each. The

dat are presented in Table 5.9. With 150 KB available for newly-created objects. 2.3

seconds of computation will be available to amortize die 27 ms scavenging pause. The crea-

ion rame would have to gow by an order of magnitude to be a problem.,

p'.. 
. -'

, *** *.* 
.~. 

P 4 1 4 4~



- . - - W- - S

100

Table S.9: Space allocation rate benchmarks on SOAR. . -

(Samples are complete second iterations of each benchmark.)
(Assumes new area size , ISK. cycle time - 400 ns.)

benchmark duraton space growth growth scavenge
allocated rate rate interval

_ _(cycles) (words) (w/kc) (kw/sec) (svcs)
decompiler 2,958,219 36,886 12 31 1.2
printHierarchy 119,040 1.426 12 30 1.3 -.

alllmplementors 2,257,051 18.058 8.0 20 1.9 -
printdefinition 75,319 509 6.8 17 2.3
compiler 1,117,660 7.467 6.7 17 2.3
classOrganizer Z959,728 9.905 3.3 8.4 4.6
mean 8.1 21 2.3
s__ __ __ 3.4 8.6 1.2 ,

5.9.23. Net SOAR Scavenge Overhead .'

Given the above data, we can calculate the pause time, gap between scavenges, and

average scavenge overhead (Table 5.10). The results that generation scavenging is

non-disruptive; a 27 is pause every second is hard to notice. Furthermore, scavenging uses

less than 2% of the CPU tme, allowing the computation to proceed at full speed.

5.9.2.4. Generation Scavenge Trap Time

Recall that the Generation Scavenging algorithm maintains a able of references from

old to new objects. SOAR traps when it creates such a reference, enabling the trap routine OD

enter the address of the referenced object in the table. Table 5.11 gives an analysis of store

rap overhead for the simulated macro benchmarks. The path length of 100 cycles for a store

trap was determined by assuming a I in 8 chance of window overflow, and taking the worst

Table 5.10: Extrapolated vs. Simulated Scavenging on SOAR.
best case average worst case

pause time 12 ms 19 ms 27 ms ..

scavenge interval 4.6 secs 2.3 sacs 1.2 secs
scavenge overhead 0.3% 0.8% 2.3% "
napping overhead 0% 0.05% 1.0%
total overhead 0.3% 0.9% 3.3% -r, :.

.. , ... '-..5

* 5 5*p*%I'



101

case for the other branches. The wont case overhead to maintain the remembered set is I%,

with a median of 0.05%.

5.93. Sumnary of Generation Scavenging's Performance '

Tale 5.12 sumnmais our findings. See Appendix D for a more detailed description.

Ge omo Scavenging offers outstanding performiance:

, At 3%, its CPU overhead is three times lower than deferred reference counting, its

nearest competitor on a compiled Smalltalk-80 system. The overhead is so low that

desipers of high-performance systems who formerly shunned automatic storage recla-

maon cm now embrace it..'U

I Table .11: Geaeration Scavenge Store trapping overhead in SOAR.
Ben Benchrark store store store

Nme Cycles Uraps tup tap
cycles overhead

decompiler 2958,219 0 0 0%
alImplemeurs 2,27,051 1 •100 0.004%

€imsrpnzm' 2Z99,728 14 1,400 0.05% ,.

Compiler 1,117,660 7 700 0.06%
printDeflniton 75,319 1 100 0.13%
1. 1 d- Why, 119.040 12 1,200 1.0%
median 0.05%

Table S.12: Summary of Generation Scavenging's Perfornance.
Berkeley Smalltalk SOAR

amol interpreted compiled
I o dmeasumens simulations
PrcSNo MC68010 SOAR

. cycle tme 400 ns 400us "
CPU time overhead

mum 1.5% 0.9%.
wort case n.a. 3.3%1

pas time (scavenge duration).
mum 160 ms i9 ms
worst cae 330 ms 28 ms

% peak main memory usage 200 KB 200 KB"
backing store accesses 0.15 n.a. 4 "



102

he short paus times for enMration Scavenging are a good match to an exploratory

programming eavionatL Since people have difficulty noticing pauses of 100 ms, 

they will not be disturbed by pauses of 28 ms.

The 200 KB of main memory needed for temporary data exceeds the space require-

meats of most older algorithms. However, given the state of the art in computer

memory hardware. 200 KB of overhead seems reasonable for a system with 2 MB of

mamm mer, a.ged

Ideally. Automati storage reclamation should not cause any page faults. Even without

any poi io king ne n eebrdobject in main memory, BS aeae

only I page fault per seven scavenges. .

.9.A Performance Evaluation of Direct Addressing on SOAR

Because Genermion Scavenging includes compaction, the usual indirection through an

object able is unnecessary in BS and SOAR, making them the only Smallulk-80 systems

without object tables. The indirection through such a table is sometimes overlooked when

evaluating refence-counung reclamation. but it can bea bottleneck; atypical Sma-alk-S0

system accesses the object table 1.2 times per bytecode [UnP83]. Assuming SOAR per-

forms as fast as the Dorado (300KB.c/.s), SOAR would access the object table 360,000

times per second. The absolute minimum table access would be a single load instruction.

Assuming 400 ns per cycle, such an indirection would take two cycles, or 800 ns. At

360.000 able accesses per second, that would be 0.29 seconds of indirection time for each

second of processing time. Discussions with Deutsch suggest that further optimization pos-

sibly could halve this overhead. In other words, an object table would slow SOAR by 15%

to 29%.

Although we eliminated the object table to improve performance, there is one

Smallalk-80 primitive operation that runs much slower without it. The become. primitive '

".J, i

S.".'b' ;.%



- 7 IS . Pt -A 7.-. e.- W .IN I f i

103

A.?

exchanges the identities of two objects. so that all pointers to the first object am redirected to %

the second, and vice versa.

A Smltalk-80 system with an object table can perform a become quickly by exchang-

ing object table enies (Figure 5.9). A system without an object table (such as SOAR) mustImarch objects and exchange pointers. Although we have devised strategies to limit the

search, a worst case become still involves a search throughout virtual memory. Such a long

pause is unacceptable. We avoided this problem by rewring the software for Smalltalk-80

data smctures to avoid becomes. To establish the feasibility of this approach, we added new

Collectionclass t imiscoid oneswitotrsorting tobecomes(Figure5.10),then %

modified the macro-benchmarks to take advantage of our become-less classes JWa183]. '

Table S.13 presents an analysis of this change on system performance. The printrliuon

benchmark shows that this change has a negligible effect on a benchmark that does not do

O cirel ame copy of wef se become: copy ..Sseti\I/__ \Jy\I

I obet rQ e ojtW obj able juN

L-M I "".'- em

7 7

5 5

F igure 5.9: Growing with become. The sequence above illustrates how a S malltalk-80 set < ;
employs become to grow. Initially, the set is (2. 3.5) and we artempt to add 7 to it. The set
creates a larger copy of itsel and uses become: to replace the original set with the larger

Ver.sion

",,.P

% S 4 ~ %* ~ **~4. ",-'*,,.. .

S. WS* ~ * . .



1. % .

104J.r

onal nw array pan switch internal pinter

set

tally aytay
E.

i--J W  -. ',

7 7~

Figure 5JO: Growing without beon. T7e sequence above iflwtraes how our ominfoded
sea grow without restortig to become:. 7s contnts are stored in a separate array. To . .

grow. Ate t allocates a larger array, iitializes it, and redrects an internal point to the
new array.. We ha rdplaced costly implici indrection with &Wklcir indirecdon thlat incurs .

cost ony when neaded. ThiM u in keeping with Aht RSC phiosoph. ".. ;"

Table 3.13: Performance impact of eliminatI eomes. b.',-.
benchmark becomes duration duration cycles

w/ becomes wlo becomes saved
(cycles) (cycles) ..

prin~efininon 0 75,475 75,317 0% -

compiler 7 1,383,201 1,127,658 18% i-, ...

decompiler 38 4,045,64I 3,006,974 26% "
prindierachy 3 165,997 119,574 28% .

any becomes. But. our efforts to eliminate becomes from programs that did use them were

handsomely repaid with an 18% to 28% performance improvement. .

Although we have eliminated becomes invoked by the system classes, the SOAR pro-

grtmmer must either shy away from this primitive, or be prepared to pay a stiff performance

penalty. Forcing the user to worry about the efficiency a primitive operation runs counter to

the philosophy of exploratory programming environments in general and Smalltalk-80 in

particular. However, we believe that the become primitive is so #intrinsically %

expensive-fast becomes require a level of indirection that slows down many frequent

operations--that the effort to accomplish a become should not be hidden.

,.4

Ze.-.,lie
.1'o



105

We have also estimated the impact of indirection on code size. An Object Table would .

require an extra instruction to load or store a literal variable, and one indirection in the

method prologue (for the receiver). (We ae assuming that many indirections will be optim-
"

ized away, as in Deutsch and Schiffman's syswm.) Table 5.14 presents our analysis under
these assumptions. The extra code for an object table would add only 2% to the size of the

system.

.9.S. Architectural support for Storage Management

The SOAR chip supports demand-paged virtual memory with restartable, fixed sized

instructions and a page fault interrupt [SKF85J. An off-chip page map translates addresses

and maintains referenced information. The silicon cost for virtual memory is about 20 sup- ..-

port chips including the page map. Figure 5.11 shows that the SOAR host board hides the

page map access time in memory access time [BID83].

To support Generation Scavenging, all pointers include a four-bit tag. When a store Er

insmction stores a new pointer into an old object, a special trap occurs. The software trap

handler then records the reference. The tag-checking PLA has 8 inputs and one output, and

occupies about 0. 1% of the total chip area. The cost of the extra control logic to handle the

ap is harder to measure. As mentioned in Chapter 4, tagged store instructions occur so

rarely that even this small cost cannot be justified.

-S-2

Table S.14: Static cost of object indirection.
method prologues 4654
literal variable loads 3532 -_
literal variable stores 254
total imase size 1,500 kB -
relative cost of additional code 2.25%

'p.°

1o- s

b..
.- I



...

offset into page
RAM

SOAR,-...

access page map
II

Fiswe 51): Fast address translation. The SOAR system has adopted the same technique
as the Sun 68010 workstation to perform address translation without hurting performance."[
It hides the translation time in the address multiplexing delay for the dynamic RAM chips.
On each memory access, the low order address bits that specify the offset into the page are
sent to the memory while simultaneously reading the page map. The physical page number
is then sent to the memory as the second piece of the address. A virtual memory with onesegmem per object could not run as fast because the offset into a segment is not identical to

the least significant bits of the physical address. Consequently, no portion of the virtual ad-
dress can be sent immediately to the RAM chips.

5.9.6. Generation Scavenging and Activation Records

We have simplified this chapter by deliberately omitting activation records. In this

section, we outline the problems caused by activation records in Smalltalk-80 and our solu- -

lions to them. Activation records present a problem because a Smalltalk-80 program can

manipulate them like any other object. For instance, a subroutine can obtain a pointer to its

activation record and place it in a global variable. After the subroutine returns, another rou- *

.4-tine can inspect the activation record via the global variable. Since SOAR activation records

are kept in the register frame stack, extraordinary measures are required to preserve this
., -

information. When a Smalitalk-80 program creates a reference to an activation record we

mark it as non-lifo. When a non-lifo activation is about to be destroyed (i.e. when a return

instruction attempts to free it). we copy the record to the heap and adjust the references to it.

Ve.



,- .
107

ius, the stps are:

1) Detect the creation of a non-lifo reference to an activation record, then mark the
4' .I

activation record as non-lifo:

A non-lifo reference can be created by storing a pointer to an activation record or by

returning such a pointer as a result. We have allocated a distinct tag for activation

records (context, or 1 11). A tagged store instuction will trap when storing such a

pointer. As for returns, the SOAR compiler generates a tap instruction before each

return that checks the tag and naps if needed. The tap handler sets the high-order bit

of the activation record's return address. This marks the activation record as non-lifo.

Meanwhile, the reference is added to a software table so it can be updated later.

2) Detect a return from a non-lifo activation record, then copy it and update any refer-

ences to it.

7e return insruction raps if the return address has its high-order bit set. This trap

handler then allocates space in the new arm for the activation record, copies it, and

updates references to it. At this point there is no need to tap further stores, so the

reference's tag is changed to new.

We have extended this strategy to include blocks. Smalltalk-80 blocks implement con-

trol structures by allowing one routine to control execution in another's context. Fre-

quently, a block is created, passed down the call chain to a subroutine that repeatedly

V
invokes the block and then returns. Thus, we must impose a minimum of overhead on this .r

case, while handling non-lifo references to blocks. In other words, although a block is an

object that refers to a context, we do not mark the context as non-lifo until the block itself

becomes non-lifo. This is accomplished with the same mechanism outlined above; using the

context tag for block objects.

.~ 
-.-

-.5....- .

.4.0

' "-

4. , , . .. ' " ..-. ,, . ." .'. % " '. . .-- -. - . -, -. -. '- -. '-.'%



108 I,.

.%

5.9.7. The Potential Problem of Premature Promotion,"

Recall that Generation Scavenging is based on the assumption that the longer an object

surIves the longer it will remain thlive. Thereore. when an object attains a ripe old age, it is

promoted from die new generation to the old. At this point, the system assumes that the

object is immnortal and ceases attempts 10 reclaim it. For this rMason, We Call the promotion ,

prooes t, nuring. However, in some cases the object way die shortly thereafter and waste ..

space long after its useful life.

At first glance, oe would expect dead tenured objects to waste backing storage, but %

not main memory. They would seem to get paged out to make room for tenured objects that

remain alive. However, because an object is so small relative to the size of a page (14 vs.

1024 words), a page could easily contain just a few live objects among many dead ones. .
This internal fragmentation could tie up much mom main memory than is actualy needed

for the live objects. In this manner dead tenured objects can increase the number of pages in

the working set.

How severe is this problem? We plan to reclaim dead tenured objects once a day by an

offline reclamation program. How many will build up in a day? We won't know until we

measure the lifetimes of objects over hours of elapsed time on a high-performance system

like the Dorado or SOAR. Chapter 6 has a more detailed discussion of this issue and sna-

egies for coping, should it turn out to be a problem.

,.10. Summary of Reclamation Algorithms

* Table 5.15 summarizes our results: both Deutsch-Bobrow defered reference counting _-_

and Generation Scavenging perform well enough for an advanced personal computer. The

advantages of Generation 9cavenging over deferred reference counting are: --.'

4 4.

- .-

,J... ....

• . . . . ....., . . ... .. .. X. . .. , .-*- ..,,- ,: -- ... ..



" it reclaims circular structures,

" it includes compactio, and _ ,

" it uss less than a tenth of the total CPU time.

,11. co aloms

The combination of generation scavengpng and paging provides high performance

automatic storage reclamation, compaction, and virtual memory. This method of storage

ianagemett has proven its worth daily in Berkeley Simaltalk, which has supported the

SOAR compiler project, architectural studies, and text editing for portions of this chapter.

The algorithm we have presented may not accommodate objects that live for a medium

amount of time; they may increase the time overhead or cause thrashing. Measurements

must be taken on high-performance Smalltalk-80 systems to understand the behavior of

these objects.

Table 5.15: Summary of reclamation strateies. -
I CPU tM main memory paging pause pause

for dyamic I/Os time interval
: objects (mc) (sec)
_.ga i, no nac-,,,-on ? 15 KB -501s
immed ref. count 15%-209 15 KB 0 m

(compaction) 1.3 60-1200
deferred ref. count 11% 40 KB ? 0.030 0.30

(compaction) 1.3 60-1200'
mark and sweep 25% - 40% 1900 KB 90/gc 4.5 74
Ballard 7%* 2000 KB 0 0 .o
Generation Scavenging

BS 2% 200 KB 1.2/s 0.16 16
SOAR best case 0.3% 170KB 0 0.011 4.0
SOAR average 0.9% 170KB 0 0.017 2.0
SOAR worst case 3.3% 170KB 0 0.025 1.1

•3lteds SMi80 sysim used is..-, uf vee9 1WUUiM. Al.hou ug a VAX 111/70 O n -- conyiler
mto 6hmrk ive twn slow nm Duech's defetd ufemmce commg dymicafly compilhd Xwon STW4K yme."
12&983,DSM4]. l5lmd's w qe mclimuaon signttim may well exeed 7% oveaed on a compiled Smllutlk-O ymm."

%,

i%.

_ . r . .P . . . . " .. .' r e .. ,. . .. " .- ' . '. .* . ." • ... .' ... . . . '.. . . ".r



110 
,

Hig perfonna storage reclamation 0n two priniple:

Young objects die young. Therore a eclamation alSonthm should not waste time on

old objects.

For young objects, fatal es overwhelm survivors. Copying survivors is much cheaper

than scannig corpses.

Cardul consideration of the virtual memory system is essential. Generation Scavenging

combines these lessons to meet stringent performance goals: low time overhead (2% in BS,

3% in SOAR), imperceptibly short pause tins (160 ms in BS, 27 ms in SOAR), and a low -_ Is

page fault rate (1.2 faults/sec in BS). Meeting these goals costs 200 KB of primary memory,

but the result is worth it; a high-performance computer system with fast automatic storage

reclamation. 4 ,

'U..

~:, ..

or"

7:

, d ... ;. .' ,.',.. . ". .



7 Z' . %

,

Chapter 6

Scavenging Data with Intermediate Lifetimes

6.1. lnroducdm-

What happens if the age of an object fails to predict its lifetime? An object that sur- .

vives long enough to be promoted but succumbs shortly thereafter will waste storage in old

space. This chapter contains a detailed description of the problem. how we have attacked in

Berkeley Smalltalk, some proposals for extra generations, and an analytical model that sheds

some light on die effec of various parameters on performance.

CL The Tenuring Thremhold

When should Generation Scavenging tenure an object? Since we have observed that

young objects are likely to die and old ones ae likely to persist, our algorithm tenures an

object that lives long enough. The easiest way to measure age is to count the number of

scavenges an object survives. Thus. each object contains a byte that is initialized to zero and

is incremented on each scavenge. If an object survives for a certain number of scavenges, it

gets tenured. The problem is to choose this threshold. If it is too small, that is if Generation

Scavenging tenures objects too soon, a large fraction of them will die shortly after receiving

tenure. Tenured garbage wastes space on backing store, and more importantly, may slow the

*system with extra page faults by mixing dead and live objects on the same page. On the

other hand, if the •suring threshold is too high, long-lived objects will pile up in the new VA_

aM, creasing the mount of dam that must be copied for each scavenge. This will

increase the pause im and the CPU overhead for storage reclamation. Thus, the tenuring

threshold must balance the increase in page faults caused by tenured garbage against the

exta pause time caused by scavenging long-lived objects.
% -.

.* p
- ; ]. %; ; . . * . : :

.
, ."."/'%,;/'.'.'.p-



112

hn Berkeley Smalltalk, we have included a feedback-mediated adaptive algorithm to

et the menurin threshold. The algorithm examines the amount of data that survived the pre-

vious scavenge and adjusts the tenuring threshold accordingly. The current implementauon

limits the tanuring threshold to 64, where it remains most of the time. On SOAR, a Utiring

threshold of 64 would mean that an object would have to survive for more than a minute io

be tenured. Since the response time for most requests is much smaller than a minum setting

the unuring thrshold to 64 would allow Generation Scavenging to reclaim the bulk of the

gbage online.

We have performed an experiment with BS to better understand tenuring. Since the

objects of concern are those that live for relatively long times. a typical interactive session of

several hours duration would be ideal for charactenizing tenuring behavior. Berkeley

Sma~ltalk's poor overall performance, 10% of a Dorado, prevented us from gathering data

from a typical interactive session. Lacking a Dorado or SOAR chip, we settled for a syn-

4
tetic workload: our image merely ran the decompiler benchmark twenty times. The inter-

val between scavenges was held fairly constant while varying the tenure threshold. A total

of 20kw was allocated in the new area (plus 20kw for each survivor area). The feedback

mediated scavenge algorithm used an average of 18.7 kw before each scavenge. Table 6.1

gives our resulti.

Figure 6.1 shows the relationship between the tenuring threshold and the number of

-. _. I byes of data that were tnured. As expected. the number of objects achieving tenure

decreases as the time required to obtain tenure increases. In addition, there are two knees in hi

the curve - also just as expected. The first knee. at a tenure threshold of one, merely

proves that most objects die very quickly. The reason is that a threshold of zero means that

every object gets promoted-even though it may be only milliseconds old-but a threshold -

of one means that an object that gets promoted must be older than the time between "4

,'- scavenges. Since the scavenges occurred every 3.5 seconds, this knee shows that many

%-"I



-i-' j "- L h W W r r.r F ' - c '- . . *,.' '.- .-. - - . .

113

Table 6.1: Results of BS tenuring exerinent.
I tenure # s's tot total avg. max CPU time

threshold time tenured surv. srv. overhead
(8 ') (secs) (kw) (kw) (kw)

0 90 340 56.0 2.3 4.3 0.6%
1 83 290 17.0 2.9 4.3 0.8%

2 83 310 16.9 3.0 4.3 0.8% .1

*3 83 300 16.7 3.2 4.5 0.9%
4 83 290 3.7 3.4 4.8 0.9%
6 83 300 3.9 3.5 4.6 0.9%
6 5 3 300 3.7 3.4 .4.6 0.99%
7 83 280 3.7 3.5 4.7 1.0% %
8 83 290 3.6 3.6 4.8 1.0%

16 83 290 2.9 3.8 4.9 1.0%
32 83 300 2.4 42 6.9 1.1%
64 83 290 2.0 5.1 6.4 1.4%

objects live less than 3.5 seconds.
'.4

The second knee, at 4, indicates that many objects live for more than 3x3.5 seconds but

less than 4x3.5 seconds. This is not surprising because each iteration of the benchmark took

about 12 seconds. The only objects tenured at a threshold of 4, were those that survived for

more than one iteration. These were the text lines printed on the screr from the bench-

marks. This experiment confirms our understanding of tenuring; any object which outlives

the product of the tenuing threshold and the inter-scavenge time gets tenured.

Although minimizing the amount of tenured data saves (virtual) memory space and

improves paging performance, it forces the scavenge operation to copy more survivors,

which takes mor time. The surprise is how small this increase is. In this experiment, the

quantity of tenured dat-which is principally garbage-decreased by a factor of 23, while

the time spent on scavenging merely doubled. ,'

Unformately, we would need measurements of a fast Smalltalk-80 system to corn-

plenly predict the effects of tenuring. Tenuring affects objects that live for minutes or

hours. These objects are used by people. not programs. For example, the objects that,"..

med on 24 cyclesu ivr 3500 w deved in Secoun 5.92. 1. 4 ... --

71'7

e-4



114

Effect of team resboM on amoumt tenund.
100 . ...... . ... o

.. 5

:t 10 ... ....... ........... ................................... ......................... ,"

S -,

.ms urvie 4 scavenge before teure

wd

a eur thehldo .ad4

:ow

00........
a0 2 0 4 0 6 7 . ,

. . €ompme • window on e 4 scwolavee lfotme (oflmnts.Bcus hirlfems

. .depnd bw popleusethe. w canot xtrpolte rom• slw Salla~k80 yss

4

'.5 .: ,1..,, ,• -,,. .. ,1 ..-_. . ,. . - .. . ., ,: ..: ,- .. ..: , -,., -.-...-.-..... ....- - ,, ,..... -.., ..... ... ..., . .'.



-( 115

Two generations wish fast enuring. This is the present configuration. Deutsch has

estimated that data structures used by a typical window, for example a browser, con-

sume 15 KB of memory. At 20 cycles per word, that means that it would take 30 ms to .-

scavenge the data for a window. Thus, assuming 150 KB of new space, every

untenured window would add 3% to the scavenging overhead, limiting the number of

untenured windows to about 4. If the rate of window creation is slow enough, a system .A.

that tenures objects so fast that every window gets tenured may be practical. On the
other hand, if many windows are created and immediately destroyed (as in the case of

error message windows) it may be important to retain a few untenured windows. ,. .,
...- ..

2. Two ge ratons with slow tenwing. Assume we dedicate a megabyte of physical

memory to new objects. Then the system can run seven seconds between scavenges.

That means that a more data can be scavenged without incurring incurring excessive "

overhead. In fact, the limit becomes the scavenge's pause time, not the percentage of .. ,4

overhead. Suppose that we accept a fifth-second pause every seven seconds. That is S -

long enough to scavenge seven windows. This may be a sufficient number of

untenured windows to avoid tenuring garbage. (Interestingly, seven is roughly the size

of a human short-term memory.)
.'..-.

3. Three generations with fas tenaring. Suppose we add a third generation in the middle.

Some of the space for the third generation can be obtained by reducing the size of the -

youngest generation from 100KB to 50KB, which mples the scavenge overhead to a

(still acceptable) 3%. A middle generation of 300KB of physical memory can contain

on untenured windows (in each semispace). The time for a scavenge of the middle

generatio would be about 300 ms. This option can support about the same number of V

windows as the two generation, slow tenuring one. but with slightly more space and

significantly less time overhead.

... 5 . . ,.'



116

4. Three gen tions with slow tenuring. Suppose we add a larp third generaion, but
use virtual memory instead of physical. Scavenging this middle-aged generation

would then incur page faults and cause a perceptible pause, perhaps one to three 

seconds. However. 30 windows could be created before filling (the 1/2 MB semispace ""

of) a one megabyte generation. Thus, these long scavenges would be infrequent, and

acceptable.

5. Four generations. SOAR's tags support four generations, so we could combine the

above schemes. The youngest generation would be small, locked into memory, and

frequently scavenged. An object surviving two scavenges would be promoted into the

next generation. This would also be in physical memory, but larger. This generation

would bold the newest few windows. Thus, this is important if many windows are

closed immediately. The third generation, would be about a megabyte, and located in

virtual memory. Most windows and medium lifetime objects would reside here. They ,,

could be reclaimed without a complete reorganization. Finally, permanent objects like

the square-root routine would reside in the oldest generation, which would be

r claimed and reorganized offine. Table 6.2 summarized these proposals. More work

is needed to measure the behavior of these medium lifetime objects and to design

appropriate two- or three- generation parameters and reorganization algorithms.

6.3. Analysis of a Single Scavenged Generation

How much physical memory must be dedicated to new objects? In this section we

present an analysis of a two-generation system where one generation is scavenged (New)

and the other is reclaimed offline (Old). Since the Old objects am reclaimed offline, we will

only analyze the New generation here. Table 6.3 introduces the relevant terms. The first .

constaint we face is to keep the scavenge pauses small enough to be unobu-usive. The data (

on scavenging duration in the previous section showed that the length of a scavenge can be .

'CI,



( 117

.. "

Table 6.2: Summary of tenuring proposals.
Igeneraton a Iull eme,.tus

type of memory physical virtual
Proposal). Two generations, fast tenuring. _.,_._____.

c.eation ea (KB) 140 4,000
"ap time (sec) I ?
survivor ama (KB) 17 disk
pause time (ms) 30 60
scaven e tine (% ) 3% ? _,:._ _,

primary memory (KB) 170 _.00_ _______."00

Proposal . Two generations, slow renuring. __._.__

creation area (KB) 420 4,000
gap time (a) 3 ? -
survivor area (KB) 170 disk
pause time (sec) 0.30 60
scavenge time (%) 10% ?_ _._._.-.._

rimary memory (KB) 760 2,000
Proposal 3. Three generahons, fast tenuring.

creation area (KB) 140 0 4,000
gap time (s c) 1 600 ?
survivor area (KB) 17 15O disk
pause time (sac) 0.030 0.30 60
scavenge time (%) 3% 0.05% ?______ "___'-'

nmry memor, (KB) 170 300. 1 -3MB
Proposal 4. Three generations, slow tenuring. "...'.'._."

creation area KB) 140 0 3,000
gap time (sec) I 2000 ?
survivor ama (KB) 17 500 disk

-pause time (sac) 0.030 10 60
scavenge time (%) 3% 0.5% ?
primary memory (KB) 170 500 0.5 -25 MB

Pro osal 5. Four generations. 0"3,0•
creation area (KB) 140 0 0 3,000

ap time (sc) 1 600 20.000? ?
survivor arm (KB) 17 150 500 disk
pause time (sac) 0.030 0.30 10 60
scavl(e time %) 3% 0.05% 0.05%? ? "primary memory (KB) 170 300 500 0.5 -2.5 MB

500 0.5 -

.o -

"."I-

€ 'i

p %.

; - . , -- - J -- .- -. ". - . " -: " "': " -" ' ', -. -. -, '. - 4 -' ',: '- " / -. -, ,, -." ." .' -"- .- - .-- .< '-.'- ,' .'; '.; - .' '; € . ,' ." / G " .' . ." . \ , .-



%4-N w N .0 J. P.,

.......... .....
~118

I Table 6.3: Quantities to analdze a sigle generation.
1 1~s d~giz I units

constats
Cr SOAR cycle time seconds
M scavenp effoit avg. cycles per scavenged byte cycles per byte
bW allocation bandwidth: rate of new date instantiation bys per second

Independent variables
1,v size of eac survvor am bytes

Eden .size of new obj-t creation area byes,
dependent variables

_ _ _m _ _bl mor used byte s
i- ga! p betwee sc-avenges seconds

on of CPU used for scavenging this generation traction [0, 1

predieed from the amount of data surviving the scavenge.

'S p,.ase (sexct )Xs (I)
~,'%

Let's test this with an example. Plugging in typical SOAR parameters cr = dOOns,

o.

.
st 5 .5cyc lbyte, and sian' - S0Obyres:

pause a (S.Sx0NQ )xS0 - l~m (lE)

which maches the simulated pause time of 19 ms.

Reducing the scnuring threshold will limit the quantity of data that survives a scavenge

by promoting the oldest surviving objects. Once in Old space, they need not be scavenged.

But, as discussed in d previous section, too much tenuring can provoke thrashing. Thus, "- .

we recommend choosing an acceptble pause time (perhaps from 10 ms to 100 ms) and

adaptively adjusting the tenure threshold to maintain the corresponding amount of untenured

data. .N

The next step is to calculate the amount of memory devoted to newly-created objects.

Let's assume that the rate of object allocation is fairly constant. Then -..

Ed, e (2)
II For example, in the growth rate experiment in the previous section, we found that the com-

piler benchmark generated 17,000 words per second. Thus, abw= 68,0byres Isec. so for
• . , .. -



1 119

Eden~ ISO=.00

OF= 50M 2.21c (2E)

In other words, with 150 KB for new objects, SOAR could run for two seconds between suc-

cessive scavenges.

Although. ov = Pau we will use a simpler approximation,
% pause +gap

ov = (3)

for our analysis. (This is a reasonable approximation because we only care about systems

with low overhead.) Continuing with our example, we can use equation (3) to calculate the

time overhead:"
19ff

". ov =-=0.86% (3E)
2.2se"

Since we have expressions for the pause and gap times, we can combine (1), (2), and

(3) to express the overhead in terms of memory allocations:

surv ov '.51
.gS M (4) v**

Nden (sexctxabw)

Suppose we need to decide how much memory to allocate for Eden in SOAR:

%.

Eden xr 130KB (4E)

So, for 2% overhead, we would allocate 65 KB to Eden. This would total
.0

. 24600 65.000 = 2KB of main memory for New objects.

For the general case we can combine

mm a E4n + 2.xrv (5)

with (4) to calculate the total memory required. Suppose we built the system as described

,fgabove, only to discover that it tenures too much garbage. The first step to cut down on

.Unuring would be to boost the quantity of untenured survivors. This will increase the pause .

*1*

"]



120

time for a scavenge; equation (1) says that surv = pause Thus, 50 KB of survivors will

e1 "

result in pauses that last 100 ms. The increased pause time will drive up CPU overhead

unless we dedicate morn memory to Eden. Suppose we allow CPU overhead to rise to 5% to

economize on memory, then equation (4) gives the size of the Eden area required.

50,000 0.0'- =0.33
Eden 0.15

Eden =150,000

Equation (5) then supplies the total memory for this generation:

nmwry - 150,000+ 2x50,000 = 250,000 (SE)
0%,"

6.4. Analyzing a Middle Generation

What if this is still not enough space for medium-lifetime objects? A third generation

can be added in the middle. This results in a system with three generations: a generation for

evanescent objects (Generation 1), a generation for medium-lived objects (Generation 2),

and a generation for permanent objects (Figure 6.2). Assuming that we keep Generation 2 in I.,

primary memory, how am we going to divide memory among the two scavenged genera-

dons? The equations in the previous section specify the behavior of a single scavenged gen-

eration, so we can apply them to each of the two scavenged generations, using subscripts to . .-

ndicate the generation. Then, by superposition from (4):

(sIXCt IXabW )Sltrv I (se 2XCt ?xabw 2)"r 2oV =mow J+o : W . (6) >-
Eden + Eden 2

For example, assume that each window uses 15 KB of data, and that we want to be able to

support ten windows without Inuring. Then surV2= - I0KB. If we open one window per

minut, abw. 2= 15- =250bvtessec. (Se and ct are the same for both generations.) Thus.

1300 ~74 (E
EdnIEden 2 %

%'%

.-.

A-. .'. L,'.%. _ . ., '-' .- . . .-. .,-, . . ._., .-..- . .--. ,--- ,_ -- ,. ,,.,.(,,', ."-' - ,,-



121

Generation I Generation 2 Generation 3 -

"Assistamn.... Associate ".Emeritus" I

Su.

tage <I min I mmn:age <Ihr Ihr!Sage
intermediate results window data system code & data
created by programs created by user created by Xerox

Figure 6.2. Diagramn of a system with a middle generation. Objects are created in the Eden
area of the Assistant generaton. If an objects fives through several scavenges in die Assis-
ta= survivor areas, it gets promoted into the Associate Eden ara. If it then survives
scavenges between dhe Associate survivor areas, the object receives tenure into die Emier-
ituas area, where it is exempt from online reclamnation. Ideally, the parameter would be set
to keep short-lived objects representing intermediate reults in Generation 1,
medium-lifetime objects used by windows in Generation 2, and long-lived objects like dhe ~
square root routine in the Old generation.

Now, let's minimize the total time overhead given a fixed amount of memory to divide

among the two Edens. From (6), substituting Eden 2 =Eden - Eden, and differentiating with%

repect to Eden 1:

d (ov) _(SEC 1X~bw,)SUV 1  (Se2XCt 2Xabw2ISUrV2

+\

(d Eden 1) Eden 1 2 (Ede -Edn

Setting=0, and solving for Eden,, we get '

(d Eden 1) PD

Eden, E__ _ __ _ _a de 2 ~i
W. e.

•* %* ". .,

'~~?4' .~ 1*.. ... ... ... ...



122

..,-.e

Continuing with our example,

M =--" 81%& ad ==19%
den 1'74 d 71300 (BE)

1+, 1+

Oivea an optimal split, we can plug () into () to find the minimum amount of over-

head for a given amount of memory:

.ovxF a ,' r4 lxctaxabw .ory 4 (ue2Xct 2xabw2WV2 (9)"

For our example,

OvxEdrn =- = 2000 (9E)

So, for 2% overhead, 100 KB of Eden would be needed. Adding in the survivor areas, 420

KB of physical memory would be used for scavenging. What about those long pauses for

Generation 2? From (1), pe,=l2M 0 ,O0'x* X= 3),u. From (5),

YicEdfN 2  .9xlOOUB
- = =76 scs. Thus, by adding a middle generation, we have made' ' gPz =  bwa 250 ;

it possible to scavenge more untenured data by increasing the gap between long scavenges.

This lets us keep 160 KB of untenured data in 420 KB of main memory at a time cost of

2.0%.

We may decide that minimizing the total CPU overhead is not as important as reducing 'V
PIP.the frequency of long pauses. In that case, we can abandon (8) and use (1) and (2). Suppose

we can only tolerate a 300 ms pause once every 3 minutes. Then, using (2)

den 2= 1 80x250= 45KB. Assuming we use the same amount of memory as above, that
%

leaves 55 KB for Eden,. Tis results in a 0.81 second gap for Generation 1. With these

parameters the total overhead is -_9+ 300 = 2.5%. Of course, this is worse than the
810 180,000

optimal overhead of 2.0%.

Va



VtM'-U6WVWVpW Z -

CL Coutbiliug the Tenuring Threshold

Objects must be tenured to avoid excessive pauses caused by scavenging too much

dat. The problem is to set the tenure threshold given the survivors from the past generation. .

We propose that a scavenge also maintain a table giving the total amount of surviving data

for each age. Such a table could then be used to predict the amount of data that would be

promoted for any given tenure threshold. Building this table would add about 10% to the

scaveng time.

6.6. The Cost of an Ofline Reorganization

To better understand the time required by an offline reorganization, we measured one

on BS, on a diskless Sun 68010 workstation. Table 6.4 gives the results: this reorganization

software is slow; 1200 memory cycles are expended in user mode on each word. Address

space limitations of early Suns forced us to reorganize the old objects by copying them to a

file, and modifying them in the file. Thus, every time a word is read from old space, a file

mad subroutine is called. Current Suns and SOAR have 16 MB of address space, more than

enough to bold a copy of the 1 MB to 2 MB of old space. Replacing file read/write software

with virtual memory hardware should result in a large speed up, and a sub-minute reorgani- .- ,

zation seems feasible. W.

Table 6.4: Measurements of an offline reorganization on BS.
user time 116.7
system time 46.1 sec
real time 179 sac
idle tme 16 sec
CPU utilization 90.9%sads 464 q

writes 492
page faults I14

initial old size 245,036 words , "
final old size 231,207 words
bandwidth 480 I sword
16-bit cycles/word 1200

,,.- .

,.'..



~y~w~b u.R~NM M ~Mj 3~~ . 5.~.~ ~'-.~ j~~ -. .t9 U VWV -F- V T -. r~--N-- - I . rzp -'A -j r N' N - W . 1 I- .,

124

6.7. Summary

Objects that live long enough to be promoted but die shortly thereafter can present a --

problem for Generauon Scavenging. To study this phenomonon, we would need data from

sessions on high-performance system using Generation Scavenging. Since we do not have

the capability to perform these experiments, we have mtrely explored some solutions that

can be adopted if necessary. The simplest stategy would be to tenuring threshold at a good

compromise between time and space efficiency. If that did not suffice it might be necessary

to add one or two moe generations.

_ -

N

&q

• -4

-'p

. -""..N".,"-,., .-.. -,...,.',.' .","..",.",',' _.'S, ,,,.,.,-N.....- / .,,., .* . .. ,.. . . . .. . . . . . . . .



125

Chapter 7

Conclusions

7.1. Conclusions

We have presented and evaluated the hardware and software design of Smaltalk On A

RISC (SOAR). We undertook this effort to se how well the reduced instruction set com-
puar style of system design would work for a software environment heretofore supported '--

only by complicated virtual machines. It has worked very well indeed. A combinaion of

hardware and software strategies has allowed us to build a single-chip NMOS microproces-

sor that will match the performance of an ECL minicomputer, despite a 5:1 cycle time han-

dicap. With about half of the ransistors of the MC68010 microprocessor, a 400 ns SOAR

will run the Smalltalk-80 system 2.5 times faster than the 400 ns MC68010. With only one

fifth of the trasistors of the MC68020, and with a handicap of about a factor of two in cycle r
time, SOAR will outrun the MC68020. RISCs pay off for expesimenua programming

environmens.

SOAR's performance comes at a price; namely, memory space. A bytecoded 32-bit

/* Smallmtlk-80 image occupies a megabyte of memory. Generation Scavenging adds 200 Kb

to this. and compiling to a simple instuction set costs another 500 Kb. With current

hardware technology, the extra 700 Kb is a small price to pay for high speed.

The most important hardware features are register windows and tagged integer instruc-
,I-

tions. These two features nearly double SOAR's performance by reducing the cost of sub-

routine cals and type-checked integer operations. Other important hardware features

include byte insert/extract instructions, two-tone instructions, forwarding, one cycle jumps

and calls, and tagged immediate data. in the realm of software, our storage management

--
%".'S



126

A stategies (discussed below), direct pointer in-line caching. and compiling to a simple

instuction set an essential. In addition to permitting fast instruction decoding, the simpli-

city of the base architecture enables us to add the language-specific extensions.

On the other hand, despite our best intentions, we included several superfluous features

in SOAR, including hardware support for storage reclamation, pointers to registers, parallel

silling, and shadow registers to aid trap handling. These we architect's traps because they

increase design time and potentially increase the cycle time without appreciable reducing the

number of cycles. These taps are baited with speedups for specific operations, and sprung

when real programs fail to perform the optimized operations.

We believe that the key to good performance is a willingness to migrate funictionality

from one level of abstaction to another, viewing the system as a whole naer than as a cot-

laction of layers. During the design process, we moved functions freely up and down the

implementation hierarchy from software to silicon to achieve good performance with

minimal hardware. For example, instead of interpretation, we have chosen to burden the

software with compiling and debugging a simple instruction set that can be executed

quickly. Also, we have replaced microcoded instuctions for infrequent operations with

software tap handlers. Our system was designed with an implementation technology in

mind; this is the opposite of separating the architecture from the hardware implementation.

We have developed an algorithm for automatic storage reclamation. Generation

Scavenging, that permits SOAR to be the first full-speed Smalltalk-80 system without an

object table. We have shown hat, unlike many competing algorithms. Generation Scaveng-

ing requires no hardware support. In addition. this algorithm reduces the time spent on

storage reclamation to 3% of the CPU time. This is three times better than other

Smalltalk-SO systems with comparable performance. Finally, unlike taditional

reference-counting algorithms, Generation Scavenging can reclaim circular structures of

dead objects. Automatic storage reclamation is no longer an important source of overhead.
'=.

;", _, .. .,. ,' .. ., • .. ,... ', .. '.f .. ..' ,, .. .: ., ,.,' .- ,. .- .- . , , .- ... .''.,,'.,...- .. .- .,'., .. ,-"... ... ., - , '- ... .' -.. ...'
',.r=, ,* ,, '., , ' ." " • ." , .- • , '-"-". - ,-' ," "- - , ". * "- . .- .- ".'. '., • " '. '- - -', '.- , " ',- - - -'. - -- ' ' -"



127~L_.

%.p

SOAR repmsenms a substantial improvement in cost-performance over previous .--

Smalltalk-80 systems. We recommend that anyone faced with the task of building a com-

puler for an exploratory programming environment consider compilation to a reduced

instuction set.

7.2. Future Work

At this date SOAR has been fabricated and. running at 800 ns., has successfully com-

plead all of its diagnostics [Pmn85b]. An unforeseen critical path to memory needed by the

fast shuffle hardware has increased its cycle time from 400 ns to 510 ns. Samples has ported
,.4 ..

the Smallut-80 system to the SOAR simulator; the system sus up and displays its win-

dows on the screen. Our goal is to run the Smalitalk-80 system on SOAR. We will then

measure the performance of the system to find any flaws lurking in our performance data. v-
One of the most interesting remaining tasks is to construct a debugger for SOAR that pro- ZJO

vides all the functionality of the current Smalltalk-80 bytcode debugger. A Smailtalk-80

system running on SOAR with complete, source-level debugging facilities would demon-
w%

smtw that the primitive level of the instruction set can be hidden from the user. Finally,

Pendleton has proposed reimplementing a stipped-down SOAR with an optimized pipeline ,

in a more advanced VLSI technology to yield a very fast Smalltalk-80 system.

* One aspect of Generation Scavenging remains in dire need of exploration: objects with

an intermediate life span. If promoted too soon. they waste disk space and can degrade vir-

tual memory performance. If promoted too late. they waste the CPU time needed to repeat-

edly scavenge them. Adding a third, middle generation is a possibility. Further research ,

will require measurements of high-performance Smalltalk-80 systems with real users to n*.

obtain realistic actuarial dam.

r %%

a, .-'

pqo '.'',' .'.-. "'.'..'',-..7'.''..''., ' % '. "....,.'. ,'_ . .... .,,-..,,'..



128

73. Acknowledgments

Many have comibuted to SOAR's success:

Many students at Berkeley contibuted to studies that helped determine SOAR's archi.uc-

or: Sco Baden, John Blakken, Wayne Cirin, Tom Conroy, Bruce D'Ambrosio, Robert *

Hagmun Edward Pelegi-Uoparn Carl Ponder. Richard Probs4 Harry Rubin. Stuart -v

Secbrest, Tim Sippel, and Paul Straus.

We were fortunae to have fis-ra CAD tols on hand built by Gordon Hamachi, Bob

Mayo. George Taylor, Walter Scom Ken Keller, Deirdre Ryan, Richard Rudel, John s

Foderuc, and Jim Larus, on team led by John Ousterhout, Richard Newton, and Alberto

Sangiovanni-Vincenwlli. Pew Foley originally designed our dampath and contol, which
an Pendleton later reesiged and built.

David Hodges led the hudwam efforts. Joan Pendleton is responsible for NMOS implemen-

mtton, assisted by Shin Kong with comtibutions by Artie Chang. Mike Klein. and Mike

Remilakrd The CMOS chip, completed by Chris Manno, started as a group effort with B.

K. Bose, Mark Hofmann, Grace Mali, H. Mattausch, Peter Moore, B. Schallenberger, Dave

Wallace, and John Zapisek. Our two circuit boards were designed and tested by Will

Brown, Frank Dunlap. Richard Blomseth and Helen Davis on workstations donated by the

Valid Logic corporation.

Paul Hilfinger led the software effort and built our first compiler, while Dain Samples. Ricki

Blau and Bill Bush provided our simulator and system software, assembler and diagnostics.

and compiler. Dain also gets special thanks for writing our internal reference manuals.

Adele Goldberg, Ted Kaehler, Glenn Krasner. and Dan Ingalls of the Systems Concepts

Group at Xerox PARC gave us a lot of assistance in understanding Smalltalk. Peter

Deuinch. of that group. deservs special recognition for sering as our liaison with Xerox,

and spending a lot of time and effort helping us understand Smalltalk systems. He and Alan " ."

L.-% 'f"% % f[,f %,, , % ' ,j. ' .,/ ./'' d_ 
_

.- . . . ' 'd' : - ' .-. _'.-. d ' ..- '. . . ., ".-.*'. . j. .'-*4'.* ..'* :*,*(.' ."-..,



Schiffman of Fairchild have built the fastest Smalltalk-80 system on a commercial micropro-

cessor. and we learned a lot from them.

We also thank MOSIS and Xerox. including Ed McCreight, J. Chen, and B. Pugh for fabri-* .y. %,

ct SOAR, and Paul Losleben and V. Tyree at DARPA for funding the project. This pro-

ject was sponsored by Defense Advance Research Projects Agency (DoD) ARPA Order No.

3803, monitored by Naval Electronic System Command under Contract No. N00034-K-

0251. It was also sponsored by Defense Advance Research Projects Agency (DoD) ARPA

Order No. 4871. monitored by Naval Electronic Systems Command under Contract No. .-

N00039-84-C-0089. The University of California, the state of California, and MM provided

me with indispensable financial support

Please join me in acknowledging the effors of the people who read through this document

and smoothed the way for you: Susan Graham and John Addison. the official readers. Ricki

Bin, although not an official reader, also took the tine for a careful proofreading. for which

I am very grateful.

I would also like to thank John Hennessy, Bob White the Center for Integrated Systems, the -

Computer Systems Laboratory, and the Department of Electrical Engineering at Stanford

University for providing me with the support, time, and facilities needed to complete this a,

dissertation. •

Then, there is the man who decided to take a RISC with SmalItalk and led the whole project

(and me). challenged us to pull it off, challenged me to write it up, and went over this docu-
4,,-.,.-..

ment with a fine-tooth comb, David Patterson. '- '

Finally, let me thank my wife. Nina, and my parents for their love and moral support.

!

F¢ m .. . _i '. -'-' -

* ~. a\I..'i-..r...a-%-..'.



130

Bibliography

LAKW] A. Aho% B. W. Kernighan and P. Weinberger, Awk -. A Pattern Scanning and

", Processing Language, Bell Laboratories, Murray Hill, NJ.

[Bsa82] S. Baden, "High Performance Stompg Reclamation in an Object-Based' ' '

Memory System," Maser's Report, Computer Science Division, Department of

E.E.C.S, University of California, Berkeley, CA, June 9,1982.

[Bak77] H. G. Baker, "List Processing in Real Time on a Serial Computer," A.I.

Working Paper 139, Mrr-Al Lab, Boston, MA, April, 1977.

[BaS83J S. Ballard and S. Shirron, 'The Design and Implementation of ,-

VAX/Smaltalk-so," in Sn,alltalkO: Bits of Histoy. Words of Advice, G.

Kr~asner (edtor), Addison Wesley, 1983,127- 150. '

[Bay84J "'Dorado Benchmarks," Smallialk-80 Newsletter, Palo Alto, CA, September

1984,18. *--

[Day85] "New Implementations Unveiled," Smalkalk-80 Newsletter, Palo Alto, CA,

October 1985.

[BeF74] W. Becker and D. Fagen, "Throw Back the Little Ones," in Throw Back the
€.a

Little Ones, Seely Dan, 0 American Broadcastng Music, Inc. (ASCAP), Los

Angeles, CA, 1974.

[BGH82] J. Batali, E. Goodhue. C. Hanson, H. Shrobe, R. M. Stallman and G. J.

Sussman, "The Scheme-81 Architecture-System and Chip," Proceedings of

the 1982 Conferente on Advanced Research in VLSI, Cambridge, MA, 1982.

(Blaa 1 J. Blakken. "Registr Windows for SOAR," in Smalialk on a RISC:

Architectural Investigations. D. A. Patterson (editor), Computer Science

|. '*-



131

Division, University of California, Berkeley, CA, April 1983, 126-140.

Pc1 ding of CS292 .

[Bla83b] R. Blau, "Paging on an Object-Oriented Personal Computer for Smallalk,""

M.S. npmo and C.S. Division Technical Report, Computer Science Division,

Depament of E.E.C.S, University of Califonia, Berkeley, CA, June, 1983.

(Bk83c] R. Blau, "Tags and Traps for the SOAR Arcbitectue, " in Smalbalk on a RISC:

Architscnral Invesr amions, D. A. Patterson (editor), Computer Science

Divisim University of California. Berkeley, CA, April 1983, 24-41.

Proceedings of CS292R...

[Blt83d] R. Blau, "Paging on an Object-Oriented Personal Computer," Proceedings of

the ACM SIGMETlCS Conference on Meawrement and Modeling of

Computer Systems, Minneapolis, MN, August. 1983.

[BDID831 R. Blomseth and KL Davis, '"rTw Orion Project - A Home for SOAR," in...-

Smaltalk on a RISC: Architectural Investigations, D. Patterson (editor),

Computer Science Division, Dept nt of E.E.C.S., University of California,

Berkeley C, April, 1983,64-109.

[Bro84] E. W. Brown, "A VibW Memory CPU Dowd with a Lw5 Cahe," Masur's

Repor. Computer Science Division, Deparmet of E.E.C.S, University of

California, Berkeley, CA, 1984.

[BuasS] B. Bush, "'Smalltalk-80 to SOAR Code," to be published as a Master's thesis. .'. -S_

Computer Science Division, Department of E.E.C.S, University of California,

Berkeley, CA, 1985.

ICha82] G. J. Chain. "Register Allocation and Spilling Via Graph Coloring,"

Proceedings of the ACM SIGPLAN Nonces'82 Symposwn on Compiler

Construction, 1982. SIGPLAN Notices Notices #1 7.

M..'.-"

m . . ,% . . . , . .. s % , - " ° " " ' %,% %," " -"" ."e ¢ ' " " ,' " " "" . "e " " - ! % " M a " % ", %

F. . . . -.. ,., a. -_.._-_." .. L" ,.- - - _' ; ' . . . ,.. . .-. .- .. ..- ' '_' r ., r:,j . - r ''r _



c .%, b. -'J.).. . 7". .

€ 3., ,

132
%
%

[CohSl] J. Cohen, "Garbage collection of Linked Data Smctures," ACM Computing

Surveys 13, 3 (September 1981), 341-367.

ICoi60] G. E. Collins, "A Method for Overlapping and Erasure of Lists," Comm. of the .

ACM 3, 12 (December 1960), 655-657.

[DAmb83] B. D'Ambrosio, "Smalltalk-80 Language Measurements - Dynamic Use of

Compiled Methods," in Smaliialk on a RISC: Architectural Investgations, D.

A. Patterson (editor), Computer Science Division, University of California.

Berkeley, CA, April 1983, 110-125. Proceedings of CS292R.

[DeB76] L. P. Deutsch and D. G. Bobrow, "An Efficient Incremental Automatic Garbage

Collector," Comm. oftthe ACM 19, 9 (September 1976), 522-526.

[Den70] P. J. Denning, "Virtual Memory," Computing Surveys 2, 3 (September, 1970),

153-189.

[DeS84] L. P. Deutsch and A. M. Schiffman, "Efficient Implementation of the

Smafltalk-80 System," Proceedings of the 11th Annual ACM SIGACT News.

SIGPLAIN Notices Symposium on the Principles of Programming Languages,

Salt Lake City, Utah, January, 1984.

[DeT80j L P. Deutch and E. A. Taft editors. "Requirements for an Experimental

in Programming Environment," CSL-80-10, Xerox PARC, Palo Alto, California.

1980.

[Deu8l] L P. Deutsch. Measurements of the Dorado Smaltalk-80 System, Berkeley

Computer Systems Seminar, Fall. 1981.

IDeuS2a] L. P. Deutsch. Storage Reclamation, Berkeley Smalltalk Seminar, February 5, %"

1982.

[Deu82b] L. P. Deutsch. An Upper Bound for Smalltalk-80 Executon on a Motorola

68000 CPU, Private communications. 1982.

W ,* * ..



133

[Deu83a] L P. Deutsch. The Dorado Smalltalk-80 Implementation: Hardware

Architecture's Impact on Software Architecture, Addison Wesley, September,

1983.

[Deu$3b) L P. Deutsch. Strage Ma emem Private communications, 1983.

[Dm85] L P. Deutsch, T1e Xerox 68000 Smalltalk-0 System, Private communications,

1985. V.

[DMS84] N. M Delisle, D. E. Mencosy and M. D. Scbwartz "Viewing a Programming

Environment as a Single Tool," ACM Software Eng. Nores/SIGPLAN Notices LN

Software Engineering Symposium on Practical Software Development

Environmints, Pittsburgh, PA, April, 1984.
p.l

[Fat83] R. Fateman, Garbage Collection Overhead, Private communcanon. August,

1983.

[Teu72] E A. Feustel, "'The Rice Research Computer-A tagged architecture," AFIPS

40 (Spring, 1972), 369-377. AFIPS Press.

[FoP81] J.K. Foderaro and R. J. FateIan, 'Characterization of VAX Macsyma,"

Proceedings of the 1981 ACM Symposium on Symbolic and Algebraic

Computation, Berkeley, CA, 1981, 14-19.
?. ',.

[Goll] A. Goldberg, "Introducing the Smalltslk-80 System," Byte 6, 8 (August 1981),

14-35.

Go184) A. Goldberg, Smalltalk-80. The Interactive Programming Environment.

Addison-Wesley Publising Company. Reading, MA. 1984. "

[GoR83J A. J. Goldberg and D. Robsce, Smalltalk-80: The Language and Its

Implementation, Addison-Wesley Publising Company, Reading, MA, 1983. ".

,. %

,q °,% % % % " % % %'%'. "''. '','v.-'% % ',% ",-' % " . % . % ,, ,. , % % % % % % . ,% .% , .



134

(-1D82] J. Hennessy, N. Jouppi, F. Baskett, A. Strong, T. Gross, C. Rowen and J. Gill,

"The MIPS Machine," Proc. Compcon, February 1982. ''

[HJP83] J. L. Hennessy, N. P. Jouppi, S. Przybylski, C. Rowen and T. Gross, "Design of

a High Performance VLSI Processor," Third CalTech Conference on Very r-A

Large Scale Integration, 1983. e,.t

ling83] D. H.SH. Ingalls, "The Evolution of the Smalltalk Virtual Machine," in .,

Smalitalk-80: Bits of History. Words of Advice, G. Krasner (editor), Addison

Wesley, 1983, 9-29.

[KaK831 T. Kaehler and G. Krasner, "LOOM-Large Object-Oriented Memory for

Smalltalk-80 Systems," in Smalltalk-80: Bits of History, Words of Advice, G.

Krasner (editor), Addison-Wesley, Reading , MA, 1983, 249.

[KEL62] T. Kilburn, D. B. G. Edwards, M. J. Lanigan and F. H. Sumner, "One-Level

Storage System." IRE Transactions 2, EC-1 I (April 1962). 223-235. Also in

Computer Structures: Principles and Examples, Daniel P. Siewiorek, C. Gordon

Bell, and Allen Newell (editors). McGraw-Hill. New York, NY, 1982. 135-142.

(Knu73] D. Knuth, The Art of Computer Programming. Volume 1, Addison-Wesley,

Reading. MA, 1973.

[Kra83] G. Krasner, ed., Smailltalk-80: Bits of History, Words of Advice, Addison

Wesley, September, 1983. ,p'.',

[KSP83] M. G. H. Katevenis, R. W. Sherburne, D. A. Patterson and C. H. S~quin, "The

RISC i Micro-Architecture," in VLSI '83, F. Anceau and E. J. Aas (editor),

Elsevier Science Publishers (IFIP). North-Holland. 1983. 349-359.

PLee84] P. K. Lee, "The Design of a Debugger for SOAR." Master's thesis, Computer

Science Division. Department of E.E.C.S. University of California, Berkeley.

CA, September 1984.

* . . .



- - - - - - - - - - - - - ---- --+ •--'++ -- - . . 4 • -- -_ - -... . . + ... -. , - ¢,..?,

135

S[i!83 H. Lieberman and C. Hewitt, "A Real-Time Garbage Collector Based on the

Lifetimes of Objects," Comm. of the ACM 26, 6 (June 1983), 419-429.

[LoK6I] W. Lonergah and P. King, "Design of the B 5500 System." Datamation 7, 5

(May 1961), 28-32. Also in Computer Structures: Principles and Examples.,

Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell (editors), McGraw-Hill,

New York, NY, 1982, 129-134.

[LPM81] B. P. Lampson, K. A. Pier, G. A. McDanie?, S. M. Omstein and D. W. Clark,

"The Dorado: A High Performance Personal Computer," CSL-81-1, Xerox '-"'
p'

PARC, Palo Alto, California, January 1981. ..

%p

[McC60] J. McCarthy, "Recursive Functions of Symbolic Expressions and Their
Compumon by Machine, L" Comm. of the ACM3 (1960), 184-195. .

[McC83] K. McCall, "'The Smalltalk-80 Benchmarks,'" in Smalltalk 80: Bits of History,

Words of Advice, G. KIrasner (editor), Addison-Wesley, Reading, MA, 1983,

151-173.

rMeC83] R. Meyers and D. Casseres, "An MC68000-Based Smalltalk-0 System," in

Smallralk-80: Bits of History, Words of Advice, G. Krasner (editor), Addison

Wesley, 1983,153-174.

[MooSS] D. A. Moon, "Architecture of the Symbolics 3600," Twelfth Annual

International Symposium on Computer Architecture, Boston. MA, June, 1985.

76-83.

IMOSIS MOSIS (MOS Implementation System) User's Manual, USC Infonnation

Sciences Institute, Marina Del Rey, CA. '

1Org731 E. 1. Organick, Computer System Organization. The B57001B6700 Series,

Academic Press. New York. NY, 1973.

0-



136

[PD80] D. A. Patterson and D. R. Ditzel, "The Case for the Reduced Instruction Set

Computer," Computer Architecture News 8, 6 (15 October 1980), 25-33. -

[PaS81] D. A. Patterson and C. H. Sdquin, "RISC I: A Reduced Instruction Set VLSI

Computer," Proc. Eighth International Symposium on Computer Architecture,

Minneapolis, Minnesota, May 1981, 43-457.

[PaS82] D. A. Patterson and C. H. S~quin, "'A VLSI RISC," Computer 15, 9 .4'

(September 1982), 8-2 1.

IPen85a] J. Pendleton, "Getting SOAR Off the Ground," Private communcation, '-

Computer Science Division, Department of E.E.C.S, University of California,

Berkeley, CA, October, 1985.

[Pen85b] J. Pendleton, "A Design Methodology for VLSI Processors," Ph.D.

dissertation, Department of E.E.C.S, University of California, Berkeley, CA,

September, 1985. .-1'

[Pie83] K. A. Pier, "A Retrospective on the Dorado, A High-Performance Personal

Computer," Proc. Tenth Annual Symposium on Computer Architecture, %

Stockhom, Sweden, June, 1983, 252-269.

, [Pon83a] C. Ponder, "... but will RISC run LISP?? (a feasibility study)," Report No.

UCB/CSD 83/122, Computer Science Division, Department of E.E.C.S,

University of California. Berkeley, CA. August. 1983. -"a-:-

[Pon83b] C. Ponder. Performance Evaluation of the Symbolics 3600, Computer Science

Division, Department of E.E.C.S, University of California, Berkeley, CA,

Spring. 1983. Informal report for CS 292R, High Level Language Computer

Architecture. "

"a

• ~~'. -!

* a P-



137

fRadM2) G. Radin, "'The 801 Minicomputer," Proc. S.ymposium on Architectural

Support for Programming Languages and Operating System, Palo Alto,

Caoria, March 1-3, 1987- 39-47.

[IRo@9 C. B. Roads, $600 Technical Sumar Symblics, Inc., Cabrdg, MA 1983.

[Rov$4] P. Rovuer, "On Adding Garbage Collection and Runtime Types to a Strongly-

9. Typed, Statically-Checked, Concurrent Language," CSL-84-7, Xerox PARC,

Palo Alto, California. 1984.

[ScW67] H. Schorr and W. M. Waite, "An Efficient Machine-Independant Procedure for

Garbage Collection in Various List Structures," Communications of the ACM j.

10, 8 (August, 1967), 501-506.

IShe83] B. Sheil, "Environments for Exploratory Programming," Datamation,

February, 1983.

[SHJ81 G. J. Sussman, J. Holloway, G. L. S. Jr. and A. Bell, "Scheme-79--Lisp on a

Chip." Computer 14, 7 (July, 1981). 10-21. ,Z ;Z

(ShM83] B. A. Sheil and L. Masinter, "Papers on Interlisp-D," Xerox technical report,

CS-5, Palo Alto, CA, 1983.

[SKA84] N. Suzuki, K. Kubota and T. Aoki, "Sword 32: A Bytecode Emulating

Micropocessor for Object-Oriented Languages," Proceedings of the

International Conference on Fifth Generation Computer Systems 1984, Nov.

1984,389-307.

[SKF85] A. D. Samples, M. Klein and P. Foley, "SOAR Architecture," Technical FIN

Report UCB/CS/85/226, Computer Science Division, Deparunnt of E E.C.S.

University of California, Berkeley, CA, March 1985. Unpublished, earlier %

version published as "Preliminary SOAR Architecture. Klein & Foley," in

Smalltalk on a RISC: Architectural Investigations. Proceedings of CS 292R..
-I-.

..-%

-* ... .'.-. *"'.e" . " " "e""o"" """t. e" ."" . 4-" r 1%" ''. '. -.. ... ".. . . '. .. ".•. .
°

'."" 
°
%. % "



7k~Z.~ h W~X VXMM WMkU-W-VW U-7E~ Vw Vw %- Vw 17 7=U V-7 - i-

138

[SSS85] Sun-3 Architecture: A Sun Technical Report, Sun Microsystems, Inc.,

September, 1985. preliminary edition.

[St&S0] T. A. Standish, Data Structure Techniques, Addison-Wesley, Reading, MA, .'

1980.

[Sta82] J. W. Stamos, "A Large Object-Oriented Virtual Memory: Grouping Strategies.

Measurements, and Performance," Xerox technical tpot, SCG-82-2, Xerox, ,.

Palo Alto Research Center, Palo Alto, CA, May 1982.

(Sta84] J. W. Stamos, "Static Grouping of Small Objects to Enhance Performance of a

Paged Virtual Memory," ACM Transactions on Computer Systems 2, 3 (May

1984), 155-180. ,.- ,C

[Suz$4] N. Suzuki, "Developing 32-Bit Smalltalk Processor With the Execution Rate of

1,400,000 Bytecode/Sec," Unpublished, 1984. Translated from Japanese.

[SZH85] D. C. Swinehart, P. T. Zellweger and R. B. Hagmann, "The Structure of

Cdar," Proceedings of the ACM SIGPLAN Notices 85 Symposium on

Language Issues in Programming Environments, Seattle, Washington, June,

1985.

JTei69] W. Teitelman, ""Toward a Programming Laboratory," in International Joint

Conference on Artificial Intelligence, D. Walker (editor), May, 1969. , ""

[Tei72] W. Teitelman, "Automated Programming-the Programmer's Assistant.," .. ..

Proceedings of the Fall Joint Computer Converence, May 1972.

Tei79] W. Teitelman. "A Display Oriented Programmer's Assistant," International WIIq

Journal of Man-Machine Studies 11 (1979), 157-187.

S. "%(Tei83] W. Teitelman, "The Cedar Programming Environment: A Midterm Report and 8 .

Examination," CSL-83-1 1, Xerox PARC. Palo Alto, California, 1983.



139

[TeiS4] W. Timlman, "A Tour Through Cedar," IEEE Software 1, 2 (April 1984), 44-

73.

ITba81) A. J. Thadhani, "Interactve User Productivity," IBM Systems Journal 20, 4

(1981), 407-421.

[UBFU4] D. Ungar, R. Blau, P. Foley, D. Samples and D. Patterson, "Architectre of

SOAR: Smalltalk on a RISC." Eleventh Annual International Swnposium on

Computer Architecture, Ann Arbor, M4 June. 1984, 188-197.

[Ung84] D. Ungar, "Generation Scavenging: A Non-Disruptive High Performance
Storage Reclamation Algorithm," ACM Software Eng. NoteslSIGPLAN Notices

Software Engineering Symposium on Practical Software Development

Environments, Pittsburgh, PA. April 194,157-167.

[UnP83] D. M. Ungar and D. A. Patterson. "Berkeley Smalialk: Who Knows Where the

Time Goes?," in Smaltalk-80: Bits of History. Word of Advice, G. Krauer

(editor), Addison Wesley, 1983, 189-206.

[Wal83] D. Wallace, "Making Smalltalk less Becoming: Removing Primitive Becomes

from Smalltalk-80," in Smalltalk on a RISC: Architectural Investigarions, D. A.

Patterson (editor), Computer Science Division, University of California,

Berkeley, CA, April 1983, 213-222. Proceedings of CS292R.

[Weg7l] B. Wegbreit, '"Ihe ECL Programming System," Procedings of the 19th AFIPS

Fall Joint Computer Conference, 1971, 253-262.

[Weg74] B. Wegbwit. "The Treatment of Data Types in ELL," Communications of the

ACM 17, 5 (May 1974), 251-264.

[WhiSO] J. L. Whfe, "'Address/Memory Management For A Gigantic LISP Environment

or, OC Considered Har ful," Conference Record of the 1980 lISP Conference, Z.-"

Redwood Estates, CA. 1980. 119-127.

p%.-4



140

Appendix A

Detailed Performance Evaluation of Individual Features

A.I. Introduction

This appendix contains detailed evaluations of the effectiveness of most of the features

in SOAR and a few proposed additions to SOAR. The raw data, instruction mixes, and exe- -

cution time profiles on which these calculations are based are in Appendix B. To guide you

through this section, we have reprinted part of the table of contents in Table A.l. There are

two kinds of subroutines in SOAR: subroutines written by Xerox in Smalltalk, and subrou-

tines written by us in assembler for runtime support Since these are written in two different • ",--"

languages, they may have different instruction mixes. For this reason, our tables of dynamic

data have three columns: one for the routines written in Smailtalk (ST), one for the routines

written in assembler (system), and one that ignores the distinction (both). Since system code

consumes two-thirds of the time, the averages (used in the other chapters) tend to be dom-

inated by the behavior of the system code. If this code were optimized, the numbers for

Smalltalk code would become more important for overall performance. For static measure-

ments. the Smalltalk routines dwarf the assembler routines, and we usually omit the assem- '-'.

bler ones.

A.2. Runtime Type Checking
r Z,

Runtime type checking distinguishes Smalltalk-80 systems from those designed for r."Al

conventional languages. SOAR supports this with a tag bit for integers and tagged integer '..'..

arithmetic and comparison instructions. %

S..... * .... *b_.*-.

.4.

iV V V



141

Section A.: Introduction ............................................................... 140
Section A.2: Runtime Type Checking ............................................ 140
Section A.2.1: How Impotant are the Tagged Integer Insuuctons?
Section A.2.1.1: Tagged Instruction Frequency .................. 142 ,.
Section A.2.1.1: Cost of Omitting Tagged Arithmetic Instructions ......... 142

Section A.2.2: Evaluating the Impact of Adding a
Compam-and-Branch Instruction ............. 153,._.....--1

Section A.2.3: Evaluating Two-Tone Instructions ................... ...... 156

Section A.2.4: How Important Are Tagged Immediates? .................... 157
Section A.3: Interpretation .......... ......... 157
Section A.3.1: Evaluating SOAR's Byte Facilities ..................... 157
Section A.3.2: Evaluation of the loadc instruction ............... 164
Section A.3.3: Barrel Shifter .,........... 164

' Section A.3.4: Evaluating the importance of Multiply and Divide
S... ............ 164

Section A.3.5: Evaluating die In1/OutI Skip Condition ..................... 168
Section A.3.6: Evaluating SOAR's Conditional Trap Instuction

169
Section A.3.7: One-Cycle Traps ....................... 169
Section A.3.8: Evaluating the Performance Impact of Shadow Re-

git n ..... . ... .................. ... . 173 -- "

Section A.3.-9 Does SOAR Really Need Vectored Traps? ............. 175
Section A.4: Procedure Calls ....................................................... 175 .,,

Section A.4.1: Evaluating SOAR's Register File Organization ........... 175
Section A.4.2: Number of Registers per Window ........................... 177
Section A.4.3: Analysis of Loadm & Stomm .................................... 177
Section A.4.4: Performance of Ine Caching ......... ........... 185
Section A.4.5: How Fast Does SOAR Shuffle? .. ............. 192 ,... 1
Section A.4.6: Evaluation of Parallel Register Initialization ................ 192
Section A.4.7: Return Options .............................................................. 196
Section A.5: Storage Management ..................................................... 199
Section A.5.1: Evaluation of the Generation Scavenge Tag Check-

ing Hardware ............................ .199 ....

Section A.5.2: Frequency of GS traps ................................................... 201
Section A.5.3: Evaluating the Pointer to Register Support ................... 201
Section A.6: Implementation ............................................................ 203
Section A.6.1: Register Forwarding ...................................................... 203
Section A.6.2: Memory Accesses .......................................................... 204

Table A.): Table of contents for AppendLT A.

0,

,.*' ".'."-'.'-." ",. % " " ' ,"."." .-.. 'J,-dl' '," "-"..J,%' ." . -.. %. ." " ' - ,," " '"-" '"-"-"-"-%r" ." '"-'-'- -N

,' .,I,.. ., .... . '. -. ,, .Td'.' '.d, ' ,' ' ? . .= _ . . _., .. , ... ,_ ,., .= ' . , 'e= - - ._ - 4_



L*

142

A"1. How Important are the Tagged Integer Instructions?

To support tagged integers, SOAR includes tagged versions of the arithmetic and com- - .

pin instructions. To assess their importanco, we first measure their frequency of use, %

then calculate the performance degradation that would be caused by replacing them by

equivalent software insuucnons.

A..1. Tagged Instruction Frequency

Table A.2 lists the frequency of each tagged integer instruction for several bench-

marks. Zero rows have ben omitted. Table A.2 above shows, for compiled Smalltalk-80

code, oue out of every 8 instructions executed exploits SOAR's integer tag-checking

hardware. Overall, the ratio is about I out of every I I instructions. Interestingly, tagged

skips oumumber tagged arithmetic in compiled code. Ir

Another way to measure frequency is to count the static number of each kind of tagged

instruction. Table A3 shows that nearly I out of every I I instructions is a tagged integer

instruction. This is slightly lower than the dynamic frequency of I in 8.

How often does SOAR detect an integer tag trap? As Table A.4 shows, these traps awe -4

quite rare; less than 4 in 1,000 tagged instructions trap. ,,.

%," .'D..L%

"1 A.-. Cost of Omitting Tagged Arithmetic Instructions

How much slower would SOAR be without integer tag checking hardware? Table A.5

shows the sequences that would be needed without it. under the assumption that no compiler ." .1

optimization is performed. (The feasibility of such optimization in the absence of type

declarations has yet to be demonstrated.) Table A.6 summarizes these data with cost figures.

The next step is to combine this cost data with the frequency data. Table A.7 lists the

time cost of omitting each type of tagged instruction from SOAR. The benchmarks would

take from 20% to 32% more time without integer tag checking hardware in SOAR. '

I 
kkI

% , ',." .. *.. . . *. . *".. .* . . .. . .' ' *.- . ".- . ..-. •"+ .. .'. ..- ". ,% .... . . . .. . .%., ._

~' * . . . . ~ * .* * . . * . * . . . . * * . . * . -0* %



143

Table A.2: Frequency of taggled arithmeti Instructions, Part 1. '

ST system both
tecstpluO4 e

all insts 65.14% 34.6% 100%
a 33.07% 0.00% 91.20%
ip 0.00% .17% 2.25%

loadc 3.35% 0.06% ..2%.

total 36.42% 6.25% 25.89%
esctivafionR~ani

all lusts 97110% 2.79% 100%, .
sub 9.46% 0.03% 9.2%
skip 9.46% 0.D% 9.20%

ap 9.46% 0.00% 9.20%

tod 28.40% 0.00% 27.61%
t assOranizer'

all ists 41.06% 65894% 100%
add !.19% .19% 1.19%
sub 0.35% 1.73% 0.15% -

sit 0.00% 0.59% 0.35%,
skip 2.96% .37% 1.70%
iaSpt 0.00% 2.49% 1.47%
load 0.00% 0.81% 0.81%

loadc 7.3% 0.26% 2.0%

lowa 11.03%" 8.79% 9.71%.":k

&Hl inst 33.42%, 66-58% 1005,
add 1.26%, 0.895% 1.01%,,-,:
sub 0.45%, 1.17%, 0.93%, "'-:
31l 0.005, 0.29% 0. 19%., ',
Skp1.94%, 0.87% 1.23% : .

boad 0.00% 1.02%, 0.68%
ioadc 7.3V% 0.265% 2.60%,-:

total 10.92% 6.07% 7.69%"""

.,. .-.:

. .Z'-,., -
.

.:..'.' # ,,+Z'','" ... " .- ,....., +,.-... .. .. ,' .,". . ... .. . ',p..,. ' * ,'..'. , .,, , ,, . .. ,. ** *,,..



144

Table A.2: Frequency of tagged arithmetic instructions, Part 2. S.
ST system both k %

mrstDecompiler
all insts 32.19% 67.81% 100% A

add 1.83% 1.00% 1.27%
sub 0.47% 1.17% 0.93%
and 0.09% 0.00% 0.03%
slI 0.00% 0.10% 0.07%
ra 0.00% 0.16% 0.11%
skip 2.52% 0.62% 1.23%
trap I 0.00% 1.56% 1.06% d % "-
load 0.00% 1.12% 0.76%
loadc 7.21% 0.28% 2.51%

total 12.08% 6.00% 7.95%
testPrintDefinition .;,

all insts 38.01% 61.99% 100%
add 2.26% 1.37% 1.71%
sub 0.08% 2.69% 1.70% -. ,
skip 431% 0.02% 1.65%
,,ap1  0.00% 3.68% 2.28%
load 0.00% 2.56% 1.59% .

loadc 7.97% 0.11% 3.10%

total 14.65% 10.44% 12.04%
restPrintHierarchy

all insts 26.25% 73.75% 100%
add 2.10% 0.26% 0.73%
sub 0.23% 0.84% 0.68%
skip 2.51% 0.05% 0.70%
apI 0.00% 2.17% 1.60%
load 0.00% 1.45% 1.07% ,-
loadc 7.62% 0.19% 2.14%-"..

total 12.46% 4.98% 6.94%
Average of macro-benchmarks

all insts 34.19% 65.81% 100%
add 1.73% 0.94% 1.18%
sub 0.31% 1.52% 1.08%
and 0.02% 0.00% 0.01%
sll 0.00% 0.20% 0.12%
ura 0.00% 0.03% 0.02%
skip 2.71% 0.57% 1.30%
tapI 0.00% 2.29% 1.49% .
load 0.00% 1.39% 0.98% -
loadc 7.47% ).19% 2.68%

total 12.23% 7.26% 8.87%

q "..Z.

I ,* \% .- %



145

Table A.3: Static Occurrences of Tamged Integer Instructions In System.
T immediat? count code code + date

adYes 1066 0.63% 0.25%
aw no 1132 0.67% 0.26%
sub yes 658 0.39% 0.15%
sub no 8 0.51% 0.20%
and Yes 60 0.04% 0.01%
and no 132 0.08% 0.03%
or Yes 2 0.00% 0.00%
or no 22 0.01% 0.01% r

skpno 2668 1.58% 0.62%
oacYes 9254 5.49% 2.15%

15862 9.41% 3.69% I

-.

.1P .0,

r7.

'...

1.4.

~% "

,'.'%

- - ....4
'V

,* -o .
""Is '' _ ' ' - - -=, - , ,. . ,. .•, , ',"-"- . ,.. € ._ '-" " '_. .- '° , . . . , ""."-"-". , . . .' %

. • € - r ./. , % . % ,- ., ., -. * - - % % % l . % % . ", *, .. '. % - % -.. ,". ,,



146

Table A.4 Frequency of Integer tag traps, Part 1. .
% of im that tag uap

ST syswm both Ib

insmuctions 65.14% 34.86% 100%

lw0.00% 0.00% 0.00% I
sttAct ivationReturn -

insauctios 9711% 2.79% 100%
total 0.00% 0.00% 0.00%

tesiClassOrganizer
instracnons 41.06% 58.94% 100%
skdp 18.75% 0.00% 10.29%
loadc 2539% 0.00% 24.90%

total 2.26% 0.00% 0.93%
te$iCompiler.. "

insuctions 33.42% 66.58% 100I%
skip 12.04% 0.02% 6.34% -
loadc 15.41% 1.38% 14.52%

total 1.36% 0.00% 0.46%
testDecompiler

insmctions 32.19% 67.81% 100%
skip 4.99% 0.00% 3.28%
loadc 17.06% 0.16% 15.76%

total 1.35% 0.00% 0.44%
restfrinrDefinirion --

inso'uctons 38.01% 61.99% 100%

skip 22.33% 0.00% 22.21%
loadc 1.03% 0.009 1.01%

total 0.08% 0.00% 0.03%

=- ~...,

"S %.,

' .,
'p °1

.-.S.



147

Table A.4.: Frequency of integer tag traps, Part 2. .. 4,.." .

%a or inss that mgfap ,

tetPrintHierarchy
insuuctions 2625% 73.75% 100%skip 2.20% 0.00 2.07% IIoadc 4.47% 0.00% 4.17%

sow 0.40% 0.00% O.10"

avg of all macro-"~nchnmorb".-''
insauctons 34.19 % 6.5.81% 100OD {

skip 12.06% 0.00% $.84% -
loadc 12-67% 0.31% 12*07%

total 1.09% 0.39

.

i .4...

,% %-

%€ " .-

" N

•4.. . 4 . .. . 4 . .4~~ . . . p * * * * . - . .~ 4 * * ~ / *4 * . -



-aJ " " ."". .W . J J -,~ -% ,-r - r '.4 .W [ x-i - .i - .... -- - - S - -

148

Table A.5: Writearound for taMed instructions, Part 1.
add & sub
%or a. b. t (omit for imm ) awdi
%k$pIm t. I<C31

%addfmb a. b, c
Saw a. b. tr

Swa . I <<31, t -

g.%sp of t, 0; (ao as equal?)
-- " promp ok: W(s OK)"--

%xw o, . t,
Sala t. I <. 31. t

%sbp eq t. 0; (ovmflow?)
j-ip am

and & or & xor
sm a. .t ( ( lmly)-
%SlbPl h ,a 1 << 31"-.-"
jump mwu ..

Sslop Im a. I << 31 ,,',

S. a. br1"x""
%mor a,b, t

%Sbp eqt, 0; (vrlw).

jum am

a-r

%kiap kaa, Ic< 31

jump anor!

%s. a.

•- .%*

%sicip h a. I <. 30
%w b,I -cc30, b

*. ..

a-o.

4\ .* .* ",

,. - ... ..,- ,, ,e.. , , ... . ,, ' . . .• - . - . , -.- . -.



-- ~- -7 - 7-7~t

149

Table AS: Writearound for tagged instructions, Part 2.skip trap

ort a. b, t; (omt for UMMsdzar.
%mbp kt a. 1c<31
jump ailmr
fl] a. U; (for 31-bit agued companma only) I '4

4. dl b. tb; (for 31-bit signed compmansn oulyl
d os '%Uapcoudta, b ,.

Sload inm & loadc
rsbp ku a. 1 << 31
jump Wor

oad / Soadc (a)b, c
load reg ...
%xwra. b,ct_

qjump p U I << 31

UMosd (&)b, c

Table A.6: Cost summannr by instruction.
OP static dynamic

(words) (cycles)
add 7-10 5-10*
sub 7-10 5-10.*
and 2-3 2-3
or 2-3 2-3
Xor 2-3 2-3
sll 6 6
sl 2 2
sm 4 4
skip 3-5 3-5
tap 3-5 3-5
load 2-3 2-3
loadc 2 2

The wie vuimeoe is causd by the overflow check, which is fuser for operads with opposite s"m.

.-. ,.

,' . . . . . . . .. . . , - . . . . . . . . . . . . , . - • . . _- . - S - . - . . . . . . . . . . .a % -



.-. o

150

Table A.7: Time cost of omitting tagged integer instructions, Part 1.
ST system both

Iest3plqs4
au cycles 59.51% 40.43% 100% "Ole

add 150.06%-300.12% 0.00% 89.40%-178.80% '.1
mrap 10.00% 13.26%-22.11% 5.36%-8.94%
ioadc 6.06% 0.10% 3.65%-3.65%

total 150.06%-330.12% 13.36%-22.21% 94.76%-187.74%
Performance relative to full SOAR (<100% is slower) 51%-35%

testAcrivarionReturn
all cycles 95.91% 4.09% 100%
sub 35.30%-70.65% 0.00% 33.87%-67.75%
skip 21.19%-35.31% 0.00% 20.32%-33.87%
load& 14.13% 0.00% 13.55%

total 70.62%-120.08% 0.00% 67.74%-115.17%
Performance relative to full SOAR (<100% is slower) 60%-46%

tes iClassOrganizer
au cycles 42.56% 57.44% 100%
add 3.99%-7.98% 4.27%-8-54% 4.15%-8.30%
sub 1.13%-2.26% 6.19%-12.38% 4.04%-8.08%
sll 0.00% 2.59% 1.49%
skip 4.61%-7.68% 2.80%-4.67% 3.57%-S.95%
trapl 0.00% 5.40%-8.98% 3.10%-5.16%
load 0.00% 1.98%-2.98% 1.14%-1.71%

Sloadc 9.80% 0.14% 4.25%-4.25%

total 19.54%-27.72% 23.38%-40.20% 21.74%-34.95%
Performance relative to full SOAR (<100% is slower) 82%-74% -, ',

'"seCompiler
all cycles 34.07% 65.93% 100%
add 4.18%-8.35% 3.05%-6.11% 3.44%-6.87%
sub 1.52%-3.05% 4.06%-8.12% 3.20%-6.39%
and 0.03%-0.03% 0.00%-0.00% 0.01%-0.01%
sll 0.00% 1.17% 0.77%
sa 0.00% 0.02% 0.01%
skip 3.90%-6.49% 1.82%-3.02% 2.52%-4.20%
trap I 0.00% 3.22%-5.37% 2.12%-3.54%
load 0.00% 1.41%-2.12% 0.93%-1.40%
loadc 9.77% 0.35% 3.56%-3.56%

total 19.35%-27.65% 15.10%-26.28% 16.55%-26.74%
Performance relative to full SOAR (<100% is slower) 86%-79%

_L...I) ' r-eZ " ,. .: # .. . .. .,' , rZ .. I "..2 , '--..- ' , ' 2'-_"'L-"3 ,''. .;.-" . "." . '," . .:A: ' ":".";;. ' '.



.. - .-.

151

4.,j

Table A.7: Tirne cost of omitting !!goed integer instructions, Part L..;
ST system both

t,$rDecompiler .

,.a cycles 32.38% 67.62% 100%
add 6.29%-12.58% 3.42%-6.85% 4.35%-8.70%
sub 1.55%-3.09% 4.00%-8.00% 3.20%-6A1% ..
and 0.09%-0. 5% 0.00% 0.03%-0.05%
sll 0.00% 0.40% 0.27%
,m 0.00% 0.43% 0.29%
skip 5.13%-8.52% 1.29%-2.13% 2.53%-4.21%
rapl 0.00% 3.22%-5.37% 2.18%-3.63%

load 0.00% 1-54%-2.29% 1.04%-1.55%
loadc 9.82% '0.40% 3.44%-3.44%

total 22.86%-34.16% 14.68%-25.88% 17.34%-28.56%
Performance relative to full SOAR (<100% is slower) 85%-78% '

testPrinDeifion .*

an cycles 38.09% 61.91% 100%
add s30%-16.61% 5.01%-10.02% 6.26%-12.53%
sub 0.25%-0.50% 9.899-19.78% 6.22%-12.44%
skip 9A5%-1S.78% 0.03%-0.05% 3.62%-6.04%
nap1  0.00% 8.09%-13.49% 5.01"-.35%
load 0.00% 3.78%-5.65% 2.34%-3.50% 4,loadc 11.66% 0.16% 4.55%-4.55%

total 29.69%-44.55% 26.95%-49.16% 27.99%-47.40%
Performance relative to full SOAR (<100% is slower) 78%-68%

restPrinHierarchy
all cycles 25.90% 74.10% 100% -","

add 7.42%-14.85% 0.89%-1.78% 2.58%-S.16%
sub 0.82%-1.65% 2.95%-5.89% 2.40%-4.79%
and 0.04% 0.00% 0.01%
sl 0.00% 0.03% 0.02% '.
skip 5.37%-8.96% 0.12%-0.20% 1.48%-2.47%
napl 0.00% 4.56%-7.60% 3.38%-5.63%
load 0.00% 2.04%-3.06% 1.51%-2.27%
loadc 10.89% 0.27% 3.02%-3.02%

total 24.52%-36.34% 10.84%-18.81% 14.38%-23.36%
Performance relative to full SOAR (<100% is slower) 87%-81%

4, *.

t% -9 --

9%. . . ."



S - -. - - IN .-T T v -- q' If,

152

Table A.7: Time cosg of omitting tagged integer instructions, Part 3.

add 6.0496-12.07% 3.33%-65% 4.15%4831%
sub 1.05%-2.1 1% SA2%-10.84% 3.81%-7.62%
and 0.039"0.04% 0.00% 0.019"0.02%
sol 0.00% 0.84% 0.51%
sra 0.00% 0.09% 0.06%
skip 3.69%-9.49% 1.21-2.01% 2.74%-4.57%
tapI 0% . 4.9%-8.16% 3.16%-5.26%
load 0.00% 2.15%-3.22% 1.39%-2.09%
loadc 10.39% 0.26% 3.76%

un]a 23.19%-34.09% 18.19%-32.08% 19.61%-32.21%1
Peiformance relative to full SOAR (4100% is slower) 94%-76% C.i-

Of coure, eliminating tag checking hardware from SOAR would also incur a space

cost for the exta checking insrctions. Table A.8 combines the static cost data with the

stac frequency data to compute the code expansion resulting from omitting data tag check-2

ing hardware in SOAR. Again, we can ignore the system code because it is so small. The

data show that 38% mome instsuctions would be needed - about 15% Of the tota image. j
Table AAS Static Cost of Omiitting Tagged Arith Insts in Systemn.

(3502 instruction words) ?.

(493 data words)
(3995 total words in sys)

(168,581 SOAR words of compiled code & literals)
(4,600 Snmiltlk subroutines) *

(430,000 SOAR words total image)
o2 immediate? cost %6code %code + damn
add yes 7462 4.42% 1.74% .. C

add no 11320 6.72% 2.64%
sub yes 4606 2.73% 1.07% ..

sub no 8680 5.15% 2.02%
and yes 120 0.07% 0.03%
and no 396 0.23% 0.09%

ior yes 4 0.00% 0.00%
or no 66 0.04% 0.02%
skip yes 0 0% 0% '

skip no 13340 7.91% 3.10%
Sloadc yes 18508 10.98% 4.30%%A-
total F564502 38.26% 15.00%



153

By moving the tag check into hardware we have increased the cost for a tag exception.

SOAR must take a trap to handle one. The data show that only 0.39% of tagged insmctions

ap, amd that only 12.5% of the instuctions are tagged. Thus, a tag trap occurs once for

every 2000 instructions. Since the tag tap handler prologue is about 25 instuctions long,

this represent a time cost of about 1.25%.

*- To summarize, SOAR without hardware support for integer tag checking and with the

,. same code generation suategy would run 24% slower and require about 150 KB more

memory.

A.2.2. Evaluating the Impact of Adding a Compare-and-Branch Instruction

Instead of condition codes, SOAR uses conditional skip insauctions. This simplifies

handling comparisons of data that are not integers. The tag trap handler need not set condi-

tion codes, but can merely return to the appropriate location. As a result, a conditional jump

in SOAR takes two cycles: one for the skip instruction and another for the jump. This is as

fast as it can be without an additional adder to compute jump addresses. if we had such a

device how much faster could SOAR run? To bound the number of times a conditional

jump instruction would be used we can count skips. We can find a more accurate figure by

counting only those skips that skip over unconditional jumps. Table A.9 present these data.

The table shows that the most that could be hoped for is an 8% improvement. Counting only

those skips that follow jumps results in a time savings of 2.6%. The large disparity implies

V., that there are many places where the conditionally executed code is only a single instruction.

For a static analysis, we counted the number of conditional jump sequences produced

by the compiler (Table A.10). The table shows that little space would be saved.

%%.

'p°:

A. 
.



154

Table A.9: Upper bound on speedup with compare-and-branch, Part I.

ST system both

instructions 41.06% 58.94% I0096 :"
Cycles 42.56% 57.44% 100% ."

untagged skip's per instrcuon 1.57% 12.39% 7.95% _

tagged skip's per instruction 2.27% 1.30% 1.70%
total skip's per instruction 3.84% 13.69% 9.65%

skip-jumps per instruction 1.06% 5.4 9% 3.67%

untagged skip's per cycle 1.06% 8.91% 5.57%
tagged skip's per cycle 1.53% 0.93% 1.19%
total skip's per cycle 2.60% 9.84% 6.76% -

skip-jumps per cycle 0.85% 4.43% 2.95%
tesWICompiler

insa'uctions 33.42% 66.58% 100%
per yl34.07% 65.93% 100%

untagged skrip's per instruction lO 1.7108%.4.
skpspr1.50% 15.57% 1-7

t tagged skip's per instructiou 1.93% 0.88% 1.23% -
total skip's per instruction 3.44% 16.44% 12.10% ,

skip-jumps per instction 1.37% 5.78% 4.30% -
untagged skip's per cycle 1.01% 10.74% 7A2% '
tagged skip's per cycle 1.30% 0.60% 0.84%
toal skip's per cycle 2.30% 11.34% 8.26%

skip-jumps per cycle 0.92% 3.98% 2.94%
tesrDecompiler

insauctions 32.19% 67.81% 100%
cycles 32.38% 67.62% 100%
untagged skip's per instruction 0.72% 17.56% 12.14%
tagged skip's per instruction 2.51% 0.62% 1.23%

. total skip's per instruction 3.23% 18.18% 13.37%

skip-jumps pr instruction 1.29% 4.63% 3.56%
untagged skip's per cycle 0.49% 12.07% 8.32% -
tagged skip's per cycle 1.71% 0.43% 0.84%
total skip's per cycle 2.20% 12.50% 9.16%

skip-jumps per cycle 0.88% 3.18% 2.44% ,7v

-77

It-_
5. ..4



155

Table A. Upper bound on seed, with co.pare-and-brancb, Par 2.
* ST sysom both

textPusDefuvmdon
38.01% 61.99% 100 ,

1 cycles 38.09% 61.91% 100l%
untagged skip's per msvuction 1.38% 9.26% 6.26%
tagged skip's per insuctiom 4.32% 0.01% 1.65%
total skip's per insmaction 5.69% 9.27% 7.91%

sk mpsper insarion 1.45% 3.81% 2.91% 1
untagged skip's per cycle 1.01% 6.79% 4-8%

tagged skip's per cycle 3.15% 0.01% 1.21%
Stotal skip's per cycle 4.16% &0% 5.79%

skip-jumps per cycle 1.06% 2.79% 2.13% 1 -
estPrinniierarchy I

iastucions 26.25% 73.75% 100%b
CYCles 25.90% 74.10% 100%b

.untagged skip's per insructo 120% 14.73% 11.18% O'

agged skip's per insauction 2.51% 0.06% 0.70%
talskip's per imu'ac~ 3.71% 14.78% 11.88%

skip-u s per ins oe 1.67% 3.90% 3.32%
untagged skip's per cycle 0.86% 10.33% 7.87% ,
taged skip's per cycle 1.79% 0.04% 0.49%
toW skip's per cyc 2.65% 10.379, 8.37% 9
ski-jumps MErccle 1.19% 2.74% 2.34%

awrae of m croh.nchmarks
iuucnos 34.19% 65.81% 100.00%

I cycles 34.60% 65.40% 100.00%
untagged skip's per instruction 1.27% 13.90% 9.68%
tagged skip's per instmrcto 2.71% 0.57% 1.30%
total skip"s per instructon 3.98% 14.47% 10.98%

skip-jumps per instrucon 1.37% 4.72% 3.55%
untagged skip's per cycle 0.89% 9.77% 6.75%
ragged skip's per cycle 1.90% 0.40% 0.91%
total skip's per cycle 2.78% 10.17% 7.67%

skip-jumps per cycle 0.98% 3.42% 2.56%

Table A.10: Space savins for compare-and-branch.
conditiolna jumps 4734
image sie.00 Kb.
space sayings for compare-and-branch 1.26%

" T : .,- J

4 . . . . - - - . . . . . ." . , - - , . . .. .. .- - .. . - , " , " , .,. . . . - " -. " - - . " '" "



156

A.2.3. Evaluating Two-Tome Instrctions-

SOAR has two modes of execution: tagged and untagged. Rather than puting a mode"

bit in the PSW and spending a cycle to switch modes when needed, we put a mode bit in

each instcton. Table A.I 1 shows how much slower SOAR would run if it took extra time

ID switch modes. The table shows that SOAR would be 16% slower without two-tone

instucoms.

To compute the code expansion, we insrumented the compiler. Table A.12 analyzes

these data. The table shows that the image would be 19% larger without two-tone insruc-

% dons.

Table A.11: Projected time cost of manipulating PSW mode bit.
ST system both

tstaasst ranizer
cycles 42.56% 57.44% 100%
cost of mode-setting instructions 17.86% 19.30% 18.69%

feSICOMPiler
cycles 34.07% 65.93% 100%
cost of mode-setting instructions 18.52% 12.68% 14.67%

testDecompiler

* cycles 32.38% 67.62% 100%
cost of mode-seting instructions 19.87% 11.92% 14.50%

teitPrin0yfinition

, cycles 38.09% 61.91% 100%
I cost of mode-setan instructions 20.53% 20.35% 20.42% *.

iesrPrintHierarchy
i cycles 25.90% 74.10% 100% ..

cost of mode-seting instructions 21.74% 9.93% 12.99%
average of macro-benchmarks .

, cycles 34.60% 65.40% 100.00% '
cost of mode-setting instructions 19.70% 14.84% 16.25%

Table A.12: Space cost of mode bit in PSW.
number of extra instructions to change PSW mode bit 70759 "
image size 1.500 kB
relative cost of PSW mode bit 18.87%

i.4
.ell

a,•" ,,

• ,,. ,, ? ,,.j , , .. , ,. . ., .,; , ., ., %.. .... ,.j,,,,,,+ , . • ., ,.., +.. .. , ,+,. . • ., ,%. . , ,,,... % ,.... ,. . .. . .. . .• " ,.



157 '5

A.24 How Important Are Tagged Immediates?

SOAR's tagged inmediate format crams tagged values such as nil, true, and false into

a twelve-bit immediate field. Without this feature, a two-cycle load instruction would be

needed to get a tagged value. Table A.13 analyzes the performance impact of this feature.

-or each benchmrk, it gives the breakdown of cycles spent in Smaltalk vs. system code,

then proceeds to give the percentage of immediates used requiring the tagged format, and

fally, the time cost of omitting this feature. These data suggest that SOAR would be 10% 

slower without this feature.

To analyze the impact of tagged immediates on the size of the compiled image. we

instrnamnted our compiler (Table A.14). As expected, non-negative intgers dominate

immediate values. Pointer imnmediates ae also frequent Interestingly, boolean masks (all

zeroes with a one in one of the top four bits, or tag values) provide a use for tagged immedi- P

ates more often than pointers. .%

The next step is to count the number of immediates that would be unrepresentable

without tagged immediates and determine the amount of further expansion in the image

(Table A.15). Tagged immediases don't save much space; the image would only be 1.2%

larger without them.

A. Interpretation

This section concerns features of SOAR's instruction set and tap system.

A.3.1. Evaluating SOAR's Byte Facilities

We perform two comparisons: the speedup possible with load/store byte insructons,

and the slowdown had we not provided the insert and exu-act instructions. Table A.16 gives

the important instuction sequences: LoadByte and storeByte are slightly faster than extract

and insert, which in turn ate much faster than relying on one bit shifts.

.... %

A' .



l%K

158

Table A.13: Dynamic usage ad cost of tagged immediate values.
(All figures in percentages.)

ST systm both 3
tesiActivation~etrwn

cycles 9S.91% 4.09% 100%

tagged immstall mm 9.09% 14.35% 9.29%
taned imm cost/all cycles 7.06% 10.57% 7.21%

test~asrgamizer -

cycles 42.56% 57.4% 100% ,.

taged imms/all imm 14.6% 14.83% 14.86%
tonged imm cost/all cycles 6.59% 11.35% 9.32%

tesicompiler I%.

cycles 34.07% 65.93% 100%

toned imm/an mms 15.08% 15.89% 15.69%
tagged imm cost/all cyeles 7.20% 11.94% 10.33%

tesiDecompiler
cycles 32.38% 67.62% 100%

tagged imms/all iumms 12.74% 16.77% 15.85%
toned imm cost/all cycles 6.12% 13.01% 10.78% i

• • testPrintiec /mition' -"

cycles 38.09% 61.91% 100% 1
toned nmmt@/aml n 12.63% 10.29% 10.88%
tonged imm cost/all cycles 5.90% 8.75% 7.66%6

testPrintRHierarchy
cycles 25.90% 74.10% 100% 1

tagged imms/all imms 1133% 15.30% 14.61%
tagged imm cost/all cycles 5.29% 11.74% 10.07%

average of macro-benchmarks
cycles 34.60% 65.40% 100.00%

tagged imms/all imms 13.35% 14.62% 14.38%
tagged imm cost/all cycles 6.22% 11.36% 9.63%

..

.,1 . ..



159

-Tabl A.14: Raw data for static analysis of taged inmediates.
imuediam value count OK in OK w/o tagged

SOAR immnediaes
an-negatve inege 35106 yes yes :YZ

neptive 31-bit integes 7968 yes yes*
boolean masks 2984 yes no -
poinmo 2433 yes no
inva idt poinas 8507 no no
invulidt intlgers 868 no yea I
toal SOAR image size 1500 kB

Table A.I5: Impact of eliminating tagged immediates.
ct for poinrs 5417 immediaws
savings for integpn 868 iamudia.es
net cost 4549 immdiates
mlative cost 1.21%

. 4-

Table A.16: Codes sequences for byte operations, Part 1.
(Byte 0 is least significant byte, byt 3 is most significant.)

Loading a byte from memory
load byte insauction (addition to SOAR)

losdByte (bst)offset + byaNo, dest

time 2 cycles
extract bte instruction (cwrent SOAR) "-

load (me)offset, dest .
"iuwt deta, byteNo, dest

time 3 cycles
no special insiactions (simplification to SOAR)

load (buse)offaet, dest
sri de dest (0 to 24 of these)
load pcRel(mask), maskReg (omit for byte 3) '

and des, muaskReg, dest (omit for byte 3)
mask: Oxff

by tOtime 5 cycles
by I time 13 cycles
byu2am 21 cycles %

byae 3 time 26 cycles
avs. time 16 cycles

b i. to be maemww4e. we mom 6a tm neuive himmiaa could be repaeaete witouat t8a d im iaem-
b eiftm ch M th opcode to mnbj ktead o( NM or, for offsets, by urng the flU 32.bit rqmmtaUtio. We futhe as.
mm de smqm wtbb m too ig for ow cumat scheme would it a four ar bt. .IA

*1a Th lesl do not At m 30AR's agged immdiate form. .%

.. .- . -. . . - e. . ' ..



160

!' able A.16: Coe sequences for byte operations, Part L.

insrt byte insruction (current SOAR)
load (haeioffet, dest.

load (base)offset, rl*.--
load pcRel(mask), maskReS
and rl, maskReg, rl
insert source, byteNo, r2
or rl, r2. rl
am rl, (base)offset

time 9 cycles
no special insr crions (simplification of SOAR) .

load (base)offset. ii
load pcel(mask), znaskReg
and rl, maskReg.rl
sil source. source
Sor maskReg. -1. inaskRes (omit for byte 3)
and source. maskReg, source (omit for byte 3)
or ri, source, ri
store rl, (base)offset

byte 0 time 10cycles
byt I dine I cycles '
byte 2 time 26 cycles
bye 3 time 32 cycles

tiv. me 22 cycles

Next. in Table A.17 we gather frequency data an insert and extract instmctions, and to

multiply by the various costs to evaluate the performance impact of these other two schemes. .- ;-'.

As shown in the last section of Table A.17, the average time savings for adding load/store

byte intuctions would be 7%, while the average time penalty for taking away the byte

insert/extact instructions would be 33%. Byte inset/exuact instructions seem to be a good

compromise between functionality and efficiency.

-.

. . .. - - .-... ,-,.- ..". ..'- .' - ' .." **. **,>,_ - " .. .. . .;
.-- ... . - . . * .. .. .-.... - .. '.s-.*... .2 ;r." . .



161

% . ,-.-..

Table A.17: Dynamic analysis of byte operations, Part 1.
testClassOrganizer

s41.06% 58.94% 100%
cyclos 4256% 57.44% 100%

insert per inst 0 0.97% 0.57%
i extract per inst 0 3-54% 2.09%

insert + extact per inst 0 4.51% 2.66%
insern per cycle 0 0.70% 0.40%
exract per cycle 0 2.54% 1.46%
insert e extact per cycle 0 3.24% 1.86%
store byte savings 0 4.87% 2.80%
loa byte savings 0 2-54% 1.46%
load & store byte savings 0 7.41% 4.26%
mm insert omission cost 0 0.70% 0.40%
min extract omission cost 0 5.09% 2.92%
mi insert/exuact omission cost 0 5.78% 3.32%

avg insert omission cost 0 9.04% 5.19%
avg extract omission cost 0 33.07% 18.99%
avg insert/extract omission cost 0 42.11% 24.19%

max insert omission cost 0 16.00% 9.19%
max extract omission cost 0 58.50% 33.60%
max insert/extract omission cost. 0 74.50% 42.79%

tes Compiler
I stps 33.42% 66.58% 100%
- cycles 34.07% 65.93% 100%
insertper inst 0 0.75% 0.50%
extact per inst 0 2.62% 1.75%
insert + extract per inst 0 3.37% 2.24%
insert per cycle 0 0.52% 0.34%
ex',,per cycle 0 1.81% 1.19%

., 4insert + extract per cycle 0 2.32% 1.53%
store byte savings 0 3.61% 2.38%
load byte savings 0 1.81% 1.19%
load & store byte savings 0 5.41% 3.57%
min insert omission cost 0 0.52% 0.34%
min extract omission cost 0 3.62% 2.38%

nmm inserttextract omission cost 0 4.13% 2.72%

avg insert omission cost 0 6.70% 4.41%
avg extract omission cost 0 23.51% 15.50%
avg insert/extract omission cost 0 30.20% 19.91%

max insert omission cost 0 11.85% 7.81% .-
max extract omission cost 0 41-59% 27.42%
max inser/extract omission cost 0 53.43% 35.23% '

" -". -"-" 1 1<1-4 1 i " _. . .1 .1 . +-.. .... .. .1", * *p, 1+- 1: *l+ . . p 1 _, +_' +' +l: . . lwL' L L L .+ +



162

Table A.17: Dynamic analysis of byte operations. Part 2. A.

testDecompiler
steps 32.19% 67.81% 100%
cycles 32.38% 67.62% 100%
insert per inst 0 1.12% 0.76%
extract per inst 0 2.77% 1.88%
insert + exuact per inst 0 3.89% 2.64%
insert per cycle 0 0.77% 0.52%
eutpercycle 0 1.91% 1 9%
insert + extract per cycle 0 2.67% 1.81%
store byte savings 0 5.37% 3.63%
load byte savings 0 1.91% 1.29%
load & store byte savings 0 7.28% 4.92%
mi insert omission cost 0 0.77% 0.52% '"

min extract omission cost 0 3.81% 2.58% "
mim insert/extract omission cost 0 4.58% 3.10%

avg insert omission cost 0 9.97% 6.74%
avg extract omission cost 0 24.78% 16.76%
avg insert/extract omission cost 0 34.75% 23.50%

max insert omission cost 0 17.65% 11.93%
max extract omission cost 0 43.84% 29.65%
max insert/extract omission cost 0 61.49% 41.58%

testPrintDefininion .

scps 38.01% 61.99% 100%
cycles 38.09% 61.91% 100%
insert per inst 0 2.23% 1.38%
extract per inst 0 6.03% 3.74% ,-
insert + extract per inst 0 8.26% 5.12%
insert per cycle 0 1.63% 1.01%
exuact per cycle 0 4.42% 2.74%
insert + extract per cycle 0 6.06% 3.75%
store byte savings 0 11.44% 7.08%
load byte savings 0 4.42% 2.74%
load & store byte savings 0 15.86% 9.82%
min insert omission cost 0 1.63% 1.01%
min extract omission cost 0 8.85% 5.48%
mi insertlextract omission cost 0 10.48% 6.49%

avg insert omission cost 0 21.24% 13.15%
avg extract omission cost 0 57.51% 35.60%
avg insert/extract omission cost 0 78.75% 48.75%

max insert omission cost 0 37.57% 23.26%
max extract omission cost 0 101.75% 62.99% """
max insert/extract omission cost 0 139.32% 86.25%

.,....

.:-*a-:



163

Tal I A4

Table A.17: Dynamic analysis of byte operations, Part 3.
esrPriuHierarchv I

sps 26.25% 73.75% 100% j
cycles 25.90% 74.10% 100%
insert per inst 0 2.84% 2.09%
extact per inst 0 4.20% 3.!0%
insert + extact per inst 0 7.04% 5.19P

insert per cycle 0 1.99% 1.47%
extract per cycle 0 2.95% 2.18%
insert + extract per cycle 0 4.94% 3.66%
store byte savings 0 13.93% 10.32% "
load byte savings 0 2.95% 2.18%
load & store byte savings 0 16.88% 12.51%
min insert omission cost 0 1.99% 1.47%
rin extract omission cost 0 5.89% 4.37%min insert/extract omission cost 0 7.88% 5.84%

avg insert omission cost 0 25.87% 19.17%
avg extract omission cost 0 38.30% 28.38%
avg inserlt/extract omission cost 0 64.17% 47.55%

max insert omission cost 0 45.77% 33.92%
max extract omission cost 0 67.76% 50.21%
max insert/extract omission cost 0 113.54% 84.13%

*, average of macro-benchmarks
steps 34.19% 65.81% 100.00%
cycles 34.60% 65.40% 100.00%
insert per inst 0.00% 1.58% 1.069c.
extract per inst 0.00% 3.83% 2.51%
insert + extract per inst 0.00% 5.41% 3.57%
insert percycle 0.00% 1.12% 0.75%
extract percycle 0.00% 2.73% 1.77%
insert + extract per cycle 0.00% 3.85% 2.52%
store byte savings 0.00% 7.84% 5.24%
load byte savings 0.00% 2.73% 1.77%
load & store byte savings 0.00% 10.57% 7.02%
min insert omission cost 0.00% 1.12% 0.75%
min extract omission cost 0.00% 5.45% 3.55%

. min insert/extract omission cost 0.00% 6.57% 4.29%

avg insert omission cost 0.00% 14.56% 9.73%
avg extract omission cost 0.00% 35.43% 23.05%
avg insert/extract omission cost 0.00% 50.00% 32.78%

max exract omission cost 0.00% 62.69% 40.77% i
max insert omission cost 0.00% 25.77% 17.22%
max insert/extract omission cost 0.00% 88.46% 58.00%

III 4

• .*. . . o -..... ".. - °. - . -. • . . -. , - . . . . . . . •. . .. '..%. o % ° - . . . o -. . .



164

A.3. Evaluation of the ioadc instruction

Is Ioadc necessary? Loadc is a load instruction with a different opcode that is only -I

used to obtain the class (data type) of an object. If the object is an integer, the resulting trap

can be handled faster because the reason for the trap as well as the destintion register am

fixed by convention. However, the tp handler for the ordinary load instruction could dis- "

cover an attempt to access the class field by merely tesn for an offset of ro. It would

take only two mome cycles to test the offset value (in a shadow register) and branch. Table '

A.18S contains an analysis of this performance impact based an the frequency of loadc traps. "'

The yble shows at SOAR could function quite well without loadc. At worst, SOAR

would be only I% Slower Without it. :

A..3 Barrel Shifter,.;

Many VLSI processors have included a barrel shifter to perform multi-bit shifts in a '

single cycle. SOAR lacks this feature. Although undisputably important for Bit~BLT, we

thought that multiple-bit shifts would not be needed for Smalitalk-80 code per se. To

confirm this, we instrumented our simulator to detect consecutive cascaded shift operations

and total the second through last. This refects the savings a barrel shifter would realize.

Table A.19 has this data. These data show that a barrel shifter would not help out SOAR.

A3.4. Evaluating the Importance of Multiply and Divide

SOAR provides no help for multiplication or division. Is this a mistake? The only

place Smalltalk-80 uses these operations is runtmne support routines for integers. We ran the

benchmarks and sampled the program counter to generate execution profiles. Table A.20

shows the results for the multiply and divide routines. The table shows that the average time

". spent in these routines is 3.2%. Extra hardware for these operations would have had liule

performance impacL

, ; " ., , -. .;% ,,,. .- .; - . .. ,.- ,,. . -:"..• .,. ...... .,.. " " - ' ' - ;." .- ;. '., ,...: .. '..-..,.

I. ,. ,., . . " - ' ' . " . -, ". "., , " '-.



- - - S.*' - . . - C --- . - .% V .' .S\ -j. % " . W J" %- '- W . Z5W . - -_5' .Q - -- - .. .jwrr r .

165

Table A.18: Loadc Time Analysis, Part 1.
(All nwnbers are in percents.)

benchmark Smalhalk system both
testAcrvionRenrn"

steps 97.21% 2.79% 100%
cycles 95.91% 4.09% 100%
loadc per inst 9.47% 0.01% 9.20%
loadc per cycle 7.06% 0.01% 6.77%
Joadc naps per loadc 0% 0% 0%
cost of omitum loadc 0% 0% 0%

testClaskOrganizer
steps 41.06% 58.94% 100%

cycles 42.56% 57.44% 100%
loadc per inst 7.24% 0.10% 3.03% 'I
loadc per cycle 4.90% 0.07% 2.13%
loadc traps per loadc 25.39% 0% 24.90%
cost of omitting loadc 2.49% 0% 1.06%

testCompiler
steps 33.42% 66.58% 100%
cycles 34.07% 65.93% 100%
loadc per inst 7.29% 0.25% 2.60%
loadc per cycle 4.89% 0.17% 1.78% .-
loadc traps per loadc 15.41% 1.38% 14.52%"
cost of omitting loadc 1.51% 0.00% 052%

tesrDecompiler
steps 32.19% 67.81% 100%
cycles 32.38% 67.62% 100%
loadc per inst 7.20% 0.29% 2.51%
Ioadc per cycle 4.91% 0.20% 1.72% -' "'

loadc traps per loadc 17.06% 0.16% 15.76%
cost of omitting Ioadc 1.67% 0.00% 0.54%

testPrinrDefinition
steps 38.01% 61.99% 100%
cycles 38.09% 61.91% 100% ',-

loadc per umst 7.98% 0.11% 3.10%loadc per cycle 5.83% 0.08% 2.27%

loadc traps per loadc 1.03% 0% 1.01%
cost of omitting loadc 0.12% 0% 0.05%

testPrintHierarchv
steps 26.25% 73.75% 100%
cycles 25.90% 74.10% 100% I
Ioadc per inst 7.62% 0.19% 2.14%
loadc per cycle 5.44% 0.13% 1.51%

loadc traps per loadc 4.47% 0% 4.17%
cost of omitting ioadc 0.49% 0% 0.13%

.4o'

J.F - F ,.;"-"'." -" "." .8 -' "



166

Table A.38: Loadc Time Analysis, Part 2. lip

(All numbers are in percenrs.)
' benchmark smalltalk system both

aierage of macro-benchmarks ....
sups 34.19% 65.81% 100.00%
cycles 34.60% 65.40% 100.00%
loadc per inst 7A7% 0.19% 2.68%
loadc per cycle 5.19% 0.13% 1.88%

I loadc raps per loadc 12.67% 0.31% 12.07%

cost of omitting lodc 1.26% 0.00* 0.46%,

.' .

a'N

€. ".

a,,



'V-.. .1

167

Table A.19: Perfonance Improvement of adding a barel shifter. ;
ST system both I
tesiCklasOrganizer

cycles 42.56% 57.44% 100%
savingsonsl's 0 0 0
savings on srI's 0 0.69% 0.40%

Isavings onsa's 0 0 0

coal savings 0 0.69% 0.40%
testcompiler "

cyck~s 34.07% 65.93% 100% ,.

savings on sil's 0 0.00% 0.00%
savings oan srl's 0 0.26% 0.17% a

savings on sri's 0 0.00% 0.00%

total savings 0 0.27% 0.18% .
testDecompiler

cycles 32.38% 67.62% 100% '
savings on sfl's 0 0 0 a,,

savings on srl's 0 0.23% 0.15%
savings on sra's 0 0 0

*. .4

tota savinps 0 0.23% 0.15%

cycles 38.09% 61.91% 100%
icleS on sll's 0 0 0

savinp ons 's 0 0.95% 0.59%
savings on sra's 0 0 0

tocal savinp , 0 0.95% 0.59%
lestPrintHierarchy

cycles 25.90% 74.10% 100%
savings on sll's 0 0 0
savings on srl's 0 0.74% 0.55%
savings on sin's 0 0 0

tml savings 0 0.74% 0.55%
average of macro-benchmarks

cycles 34.60% 65.40% 100.00%
savings on sll's 0.00% 0.00% 0.00%
savings on sra's 0.00% 0.00% 0.00%
savings on srl's 0.00% 0.57% 0.37%

total savings 0.00% 0.58% 0.37%

4

4 • .' .



168

Table A.20: Time spent in multiply and divide routines.
benchmark multply divide total

testClassOrganizer 3.2% 5.2% 8.4%
testCompiler 1.7% 3.0% 4.7%
testDecompiler 0.9% 2.1% 3.0%
OstiPhintfininon 0.0% 0.0% 0.0%

hby 0.0% 0.0% 0.0%

aver1 e 1.2% 2.1% 3.2%

A3.. Evaluating the ini/OutI Skip Condition

Table A.21 presents an analysis of the cost of omiting this condition from SOAR's

instruction set. We assume that the cost of simulating this operation is two cycles: one to

decrement each operand. This is an insignificant featur.-

Table A.21: Analysis of In /Outl condition.

ST system both
tes ClassOrganizer

instuctions 41.06% 58.94% 100% '
cycles 42.56% 57.44% 100%-
inl/outl uses per inst 0% 0% 0%
cost of omitting inl/outl% 0% 0% 0%" '

tesiCompiler

insuuctions 33.42% 66.58% 100%
cycles 34.07% 65.93% 100%
inl/outl uses per inst 0% 0.00% 0.00%
cost of omittng inl/outl % 0% 0.00% 0.00%

resrDecompiler
instructions 32.19% 67.81% 100%
cycles 32.38% 67.62% 100%

i inl/outl uses per inst 0% 0.04% 0.03%
cost of omitting inl/outl% 0% 0.03% 0.02% 1

tesrPrinrDefinirion

instructons 38.01% 61.99% 100%
cycles 38.09% 61.91% 100%
mil/outl uses per inst 0% 0% 0%
cost of omitting in 1/out 1% 0% 0% 0%

restPrintHierarchy
instructions 26.25% 73.75% 100%,.".
cycles 25.90% 74.10% 100% ..

inI/outI uses per inst 0% 0.00% 0.00%
cost of omitting in l/out) % 0% 0.00% 0.00%

. .. , .

'1 ,''% "*% ? " % % " % % '"" " % %"% "" % ".e
"

" ".P" .e ".* %.A g" ." .



169

A.3.6. Evaluating SOAR's Conditional Trap Instruction

Conditdonal rap insmacion can save one cycle for a companson whose outcome can

be predicted. Our SOAR software exploits dhe trap instruction to verify the in-line pro.

ceduzi call cache, to check the us of remm values, and t test the types of arguments to

primitive routines. Table A.22 shows the sequence that would be required without this

instruction. Table A.23 shows the trap inswuction dynamic frequency, and the time cost for

omitting this feature from SOAR. Since the overhead is one cycle per nap instruction, the

difference between the two numbers arises because the average instruction duration is 1.5

cycles. The data show that SOAR would be 4% slower without this feature. %J..

To analyze the impact of eliminating trap instructions on the size of the compiled

image, we instrumented our compiler to count rap instructions. Then assuming that each

such instruction would become two instructions - a skip followed by a call - we can cal-

culate the total impact (Table A.24). Trap instructions improve image size even less dan

execution speed, and our image would only be 2% larger without them. .'-.
"i.

A.3.7. One-Cycle Traps

At one poim in the design of SOAR, we decided to extend the trap operation rather

en egthen the cycle time [Pengb]. This resulted in two-cycle traps instead of one-cycle

raps. How many cycles did this decision cost us? Table A.25 presents our data. The result

of adding the extra cycle to the trap operation was to require fewer than one percent more

cycles. This was a good decision.

Table A.22: Writearound for trap instruction.
skip

Extra Cost I cycle

%.,..



170

Table A.3M: Time cost of omitting the trap instruction. V
(All numbers am percentages.)

ST sys both
teatActvarionRenarn

instructions 97.21% 2.79% 100% N-
-cycles 95.91% 4.09% 100%

tip instuctions per instructiun 14.20% 0.02% 13.80%
cost w/o M instruction 10.59% 0.01% 10.16%

tes:ClassOrganizer
instructions 41.06% 58.94% 100%
cycles 42.56% 57.44% 100%

tap instcions per instruction 9.53% 3.53% 5.99%
cost ap insuction 6.44% 2.54% 4.20%

tesCotpiler
insructioms 33.42% 66.58% 100%
cycles 34.07% 65.93% I00%

nip instructions per instruction 9.38% 2.35% 4.70%
cost w/o tap istruction 6.28% 1.62% 3.21% -

.esiDecompiler
instructions 32.19% 67.81% 100%
cycles 32.38% 67.62% 100%

trap instructions per insuction 9.31% 2.51% 4.70%
cost w/o tra instruction 6.35% 1.73% 3.22%

testPrin:Defininon
insauctions 38.01% 61.99% 100% .

cycles 38.09% 61.91% 100%

trap instructions per instuction 9.35% 5.64% 7.05%
cost w/o np insructon 6.83% 4.13% 5.16%

-estPrintHierarchy
instructions 26.25% 73.75% 100%
cycles 25.90% 74.10% 100%

nip instructions per instrucion 9.07% 4.22% 5.49%
cost w/o tap instruction 6.48% 2.96% 3.87% 4-

average of macro-benchmarks
instructions 34.19% 65.81% 100.00%
cycles 34.60% 65.40% 100.00%
trap instructions per instruction 9.33% 3.65% 5.59% ,
cost w/o trap instructon 6.48% 2.60% 3.93%

,.

-a. , . . .: . , , . . , , . , . . .. . .. . . . , . . . . . . .. , . ... ,



171

Table A.24: Raw data for static analysis of trap instructions.
tomi number of tap insctions 7638
total SOAR image size 1500 kB I
iulaive size impect 2.04%

y I4...

P. Il,-

.p "._p

% If

40

d6 

._

-"
,-4% -

. .. . .. . .-,. -..-.. .w . .,. .. ",.'....5 . , ,,., . .. ,.." ". a" ""e.,a i

--4 . , ,. . . , , , . . . .. ,. . ..., ., . , . ,.. ,.. , ' * . .



172

Table AM: Trap frequcies, Pan 1.
ST system both

clanOrganizer
cycles 42.56% 57.4% 4 00%
Tr'. per cycle 1.53% 0.00* 0.65%.
WO's per cycle 0.53% 0.05% 0.23%.
WU's per cycle 0.43% 0.13% 0.18%
T's per cycle 0.05% 0.00% 0.02%

W'd s per cycle 2.54% 0.18% 1.08%compiler " -

cycles 34.07% 65.93% 100%

T's per cycle 0.91% 0.00% 0.31%.
WO's per cycle 0.56% 0.09% 0.19% .

WUSprcce 0.51% 0.12% 0.17% . .

TI's per cycle 0.24% 0.01% 0.08%
OS's per cycle 0.00% 0.02% 0.00%

stal naps per cycle 2.22% 0.24% 0.76%:
decompiler

cycles 32.38% 67.62% 100%
Tr's per cycle 0.92% 0.00% 0.30*
WO's per cycle 0.34% 0.08% 0.11%
WU's per cycle 0.37% 0.07% 0.12%
T's per cycle 0.34% 0.00% 0.11%

Ota apsper cycle 1.98% 0.15% 0.64%
printDefinition

cycles 38.09% 61.91% 100%
TF's per cycle 0.76% 0.00% 0.29
WO's per cycle 0.04% 0.02% 0.01%
WU's per cycle 0.0S% 0.02% 0.02%
Ti's per cycle 0.04% 0.00% 0.02%
OS's per cycle 0.01% 0.00k 0.00%

toult naps per cycle 0.90% 0.03% 0.34%
printHierarchy

cycles 25.90% 74.10% 100%
TT's per cycle 0.28% 0.00% 0.07":
WO's per cycle 0.38% 0.03% 0.10%
WU's per cycle 0.27% 0.07% 0.07%
TI's per cycle 0.28% 0.00% 0.07%
GS's per cycle 0.08% 0.00% 0.02%

total aps per cycle 1.29% 0.10% 0.33%

'.b

,In A' A",



173

MCMMMM =M aa a n .j,%

averageyc of ma.UO*' uchlzw

TI's percycle 0.39% 0.00% 0.13% 11

OS's per cycle 0.02% 0.00% 0.00

Ltotal traps per cycle 1.79% 0.14% 0.63%

A-..Evaluating the Performance Impact of Shadow Registers

To ascertain the time cost of omitting shadow registers from SOAR, we measured the C

N frequencies of the various types of traps, estimated the added cost of handling each type

without shadow registers, and multiplied the two togete. One trap we could not measure

was the page fault trap. Handling a page fault takes so long though, that the few cycles

saved by shadow registers will not make much difference. The nraps we did include were:

integer tog traps (17 on ALU and load/store instructions, register window -overflows (WO)

on call instructions. register window underflows (WU) on return instructions, traps cause by C~

conditional trap instructions CTM, and Generation Scavenge traps (GS) on store insructions.

'Of these, only tag and Generation Scavenge trap handlers profit from the shadow registers.

Table A.26 summarizes our results. These data seem to suggest that shadow registers do not

significantly improve perforamne. The maximum improvement is 0. 12%.

A-



LNN

174

Tab A.26: Tin* cost of o iting shadow registe % %(Al figures in percets.)

test4crivasionReturn

cycles 95.91% 4.09% 100% .a

shadow cost for GS 0% 0% 0%
shadow cost for TT 0% 0% 0% 4,-

shadow cost for both 0% 0% 0%
teseClassOrganizer

cycles 42.06% 57.43% 100%

shadow cost for GS 0.00% 0% 0.00%
shadow cost for Tr 0.12% 0% 0.05% ' ,,
shadow cost for both 0.12% 0% 0.05%~~test ompiler --€

cycles 34.07% 65.93% 100%

shadow cost for OS 0.00% 0.01% .0%
shadow cost for"Tr 0.07% 0% 0.02%
shadow cost for both 0.07% 0.01% 0.03%

tesDecompiler '.i,. .S.
cycles 32.39% 67.62% 100%

shadow cost for GS 0% 0% 0.0%
shadow cost for T 0.04% 0% 0.01%
shadow cost for both 0.04% 0% 0.01%

testPrintDofition
cycles 3.09% 61.91% 100%

shadow cost for GS 0.00% 0% 0.00%
shadow cost for TT 0.30% 0% 0.12% ' .
shadow cost for both 0.30% 0% 0.12%

esrPrintfierarchks
cycles 25.90% 74.10% 100%
shadow cost for GS 0.02% 0% 0.01%' "" ,

shadow cost for OS 0.02% 0% 0.00%
shadow cost for both 0.04% 0% 0.01%

average of macro-benchmarks
- cycles 34.60% 65.40% 100.00% :

shadow cost for G 0.00% 0.00% 0.00%
. shadow cost for "T O.11% 0.00% 0.04%-

,,, shadow cost for both 0.1!1% 0.00% 0.04% •"--



175

AJA9 Dans SOAR Rea~y Need Vectored Traps?

Suppose the reason for a trap appeared in the PSW register. Then, the instructions in

Table A.27 would simulate the effect of vectored traps. As the table shows, the cost would

be four -are cycles per trap.

We can then estimate the overall performance impact by counting the number of nraps U

that occur (Table A.28). Since this would presumably allow us to shorten our traps by a

cycle, the table also fists the cost of the extra trap cycle in thec cuin~t SOAR system. The .

able indicates that the new effect of non-vectored trap would be a 2.2% percent time

pety.

AA4 Procedure Calls

-. Next we examin SOAR's features that help procedure calls.

AAL.I Evaluating SOAR's Register File Organization4

Unlike othe RISCs, the chips designed at Berkeley feature multiple overlapping

on-chip register windows. These reduce the amount of saving and restoring for calls and
eN I

returns. If this feature were left out of SOAR, then echb call would have to save the registers

* it needed. and each return would have to restore the saved registers. To measure this

hypothetical cost, assuming no compiler optimization. we counted the number of non-nil

registers before each return instruction. This count of modified registers was then doubled to

account for both the saving and restoring cost. F~inally, we added two cycles per return to

Table A.27: Simulating vectored traps._ L
%jump

--4 %extract psw, 2, rutmp
%Me

% (jump table)
Extra Cost 4 cycles

d r- a !A



176

* I Table A.211: Time cost of non-vectored traps, Part 1.
Smalltalk System both ..

testActivationReturn .1. ,
instructions 97.21% 2.79% 100% ",

ime 95.91% 4.09% 100% 41%

taps per instructon 0.30% 0.02% 0.29%
cost of extra trap cycle/all cycles 0.22% 0.01% 0.21% :-:.-cost of nonvectored trp/l yls 0.99% 0.04% 0.85%,.."'"-

restC las$Or ganizer '"."'

instuctons 41.06% 58.94% 100%
time 42.56% 57.44% 100% - =

taps per instruction 3.75% 0.25% 1.69%
cost of extra tap cycleall cycles 2.54% 0.18% 1.18%
cost of nonvectored trapsall cycles 10.14% 0.72% 4.73%

tast(ompiler
instuctions 33.42% 66.8% 100%

time 34.07% 65.93% 100%

taps per insuucton 3.31% 0.35% 1.34%
cost of exta trap cycle/all cycles 2.22% 0.24% 0.92%
.cost of nonvectored traps/all cycles 8.88% 0.97% 3.66%

resrDecompiler
instructions 32.19% 67.81% 100%
time 32.38% 67.62% 100%

traps per instruction 2.90% 0.22% 1.08%
cost of exta trap cycleall cycles 1.98% 0.15% 0.74%
cost of nonvectored traps/all cycles 7.90% 0.59% 2.96%-..

instructions 38.01% 61.99% 100%

time 38.09% 61.91% 100%

traps per insructon 1.23% 0.05% 0.50%
cost of extra trap cycle/all cycles 0.90% 0.03% 0.36%
cost of nonvectored traps/all cycles 3, 60% 0.14% 1.46%

tesrPrntHierarchy
insauctions 26.25% 73.75% 100% .

time 25.90% 74.10% 100%

traps per insuuction 1.81% 0.15% 0.58%
cost of exta cap cycle/all cycles 1.29% 0.10% 0.41%
cost of nonvectored trapstall cycles 5.16% 0.42% 1.65%

.'4.

• C w

• N.

'4.,t



-" "177

.4:

Table A28: Time cost of non-vectored traps, Part 2.
s.mlltalk System both

average of macro-benchmarks
instuctions 34.19% 65.81% 100.00%
time 34.60% 65.40% 100.00%
traps per instruction 2.60% 0.20% 1.04%

cost of extra nap cycletall cycles 1.79% 0.14% 0.72%
cost of nonvectored traps/all cycles 7.14% 0.57% 2.89%

4' account for the extra cycle of the loadm and storem instructions. Table A.29 presents these fr

data. SOAR's multiple register windows are the most significant architectural feature on the

chip: The benchmarks would take 70% more time without them.

.9. "How much would the image expand without register windows? The cost would be two

instructions upon entering a subroutine (a subtract to adjust a stack pointer and a storem to

save registers), and two instructions for each return from the routine (a loadm to restore the

registers and an add to restore the sp). Table A.30 gives our analysis.

A.4.2. Number of Registers per Window

With only eight registers, SOAR's windows are much smaller than RISC lI's. Meas-

urements of Berkeley Smalitalk suggested that this would be sufficient. To verify this we

. instrumented our system and ran some benchmarks. When more registers are needed for a

I "subroutine, it allocates a spill area in main memory. Thus, we merely counted the number of
94

spill objects allocated and divided by the total number of calls. Also, we measured how

many words were spilled to determine how many more registers were needed. Table A.31

presents these dam. These data show that SOAR's windows are large enough for

Smalltalk-80 programs; more than 97% of the subroutines called fit into a window.

"e' A.3. Analysis of Loadm & Storem

The first step in evaluating the impact of the load- and store- multiple instructions is to

measure their frequency. Since the time to simulate ore of these instructions depends on the v

49=

- \ ** . . ,-d_ .d-dl J-" - 4 " ." d . .' ' t-,' ' ' ' t.J - -a' ,- -,' € - ' ' '



- ~ ~~ ~~~ 4 -4t4--~ll 
* *V~W

178

*. Table A.29: Analysis of register windows, Part 1.
ST Sys both

* tesrAcenvan R etrn
*instructionzs 97.21% 2.79% 100% %

cycles 95.91% 4.09% 100%
nmw's* / all msts 9.62% 0.06% 9.35%
rtnw's* / cycles 7.17% 0.03% 6.88%

cost of saving & restoring rep/all cycles 71.52% 0.37% 82.38%
cost of WO/U 4%
net cost of no reg le 78.38%
pf vs full SOAR 56.06%

restclassOrganizer
insueIo 41.06% 58.94% 100 M

cycles ~42.56% 57.44% ID& I%
. 's* / a i 9.78% 4.62% 6.74%.
Ctw's* / cycles 6.61% 3.32% 4.72%1

avg res used / retw* 3.53 5.00 5.12 .
cost of saving & restoring rep/all cycles 59.90% 39.85% 57.83%
cost of WON 9.80%
net cost of no reg fil 48.03%
perf vs full SOAR 67.55%'

testompiter 6 J.

sIi33.42% 66.58% 100%

cycles 34.07% 65.93% 100%
retw's* / an ins, 9.64% 3.82% 5.77%
retw's* / cycles 6.46% 2.64% 3.94%
avg rep used / rtw* 3.62 526 5.35
cost of saving & restoring reg/all cycles 59.75% 33.00% 49.99%
cost of WO/N 9.50%.
net cost of no reg file 40.49%
perf vs full SOAR 71.18%

" '...,

5..
'5" _'



179

Table A.29: Anaysi of r ier windows, Part 2.
.. ST ss both;

wesrDeconpiler
32.19% 67.81% 100%

, cycles 32.38% 67.62% 100%
retw's" / an int 8.76% 3.62% 5.27%
raw's* / cycles 5.97% 2.49% 3.62% _

avg re used / rtw* 3.78 5.42 5.54
cos of saving & restoring regs/all cycles 57.11% 31.93% 47.31 %
cost of WOtU 6.40%1
net cost of no reg file 40.91%
pert vs full SOAR 70.97%

restPrimtDejinitioninoios 38.019b 61.999 10(0

- cces 38.09% 61.91% !0(0

retw's* / all inst 8.19% 5.52% 6.53%
nc's* / cycles 5.98% 4.04% 4.78%
avn regp used / uutw*36 5.7.2
cost of saving & restoring rep/all cycles 56.17% 50.69% 62.35%
cost of WO/U 0.50%

noet cost of no reg file 61.85%
perf vs full SOAR 61.79% '

testPrintHierarchy
insuvucaons 26.25% 73.75% 100% 4
cycles 25.90% 74.10% 100% ,

Betw's* / all insts 8.68% 2.79% 4.33%
rctw's* / cycles 6.20% 1.9% 3.05%
avg rep used / retw* 4.01 5.98 5.94

cost of saving & uestoring regs/all cycles 62.11% 27.27% 42.40%
cost of WO/U 5.10%
not cost of no reg file 37.30%
geff vs full SOAR 72.83%

awerage of macro-benchmarks
insuctons 34.19% 65.81% 100.00%
cycles 34.60% 65.40% 100.00%
re's* / al insts 9.01% 4.07% 5.73%
retws* / cycles 6.24% 2.89% 4.02%
av$ rps used / retw* 3.73 5.39 5.49

cost of saving & restoring resall cycles 59.01% 36.55% 51.98%
cost of WO/U 6.26%

I net cost of no reg file 45.72%

Lprf vs full SOAR 68.86%

Sincludu all mum mrncom a clmpe mime wmows: rem. mw. maw. muswk -- tagd or unmed.

-.. ,% -. q.Ad



WK .'. -r - -1 i -. . . . . . . . . . . . . .-- W wzw-

ISO

Table AJO: Static anal.,s of register windows.
routine entry points 4654
routine exit points 6795
image size 1500kB
relative cost 6.11%

Table A.31: Spill are d s 0
tscompiler

tota number of cycles -1,100,000
tota number of SmallIalk calls -1 8,000 ,..
number of calls using spill ame 430 ';,
total size of spill areas actually needed 883 ..' '

avg. words of spill ares used 2.1
fhraction of calls needing spill area 2.3%
mean number of cycles per spill allocation 2,600

tesrDecompiler.-r.

nomb number of cycles -2,900.000 :heloditotlnumber of'Sm&lud~k calls -46,000
number of calls using spill am l08osse4
total size of spill ares actually needed 21807 .

avg. words of spill ares used 2.6 -
fraction of calls needing spill am 2.4% '%
mean number of cycles per spill allocation 2,700

number of register actually accessed, we also gathered those data (Table A.32). The ioadm --"

and storm instructions rarely occur, only one in 130 instructions.

Table A.33 shows the performance consequences of eliminated this seldom-used

featoe. As expected from the frequency data, these instructions have minimal impact.

SOAR would be only 3% slower without them.

How much larer would the compiled image grow if we eliminated loadrm and storem?

Originally, these instructions were intended only for the system code. In that case there

would be no significant statc impact. However, our current strategy for spill areas requires

a routine that allocates a spill area to initalize it. We therefore insmmented our compiler to

count the number of words initialized this way (Table A.34). (We also subtracted out the I
number of rem instructions used solely to write nil into several registers prior to the storem.)

Omitting these instuactions would increase the size of the system by only 2%.
4 .:..

o, . .- ,, . p j ,-,, ,'. -. •% ,- - % % ." a_ % - %.%. * ' ? -,t l- S--. d % .-..- "..-' . ' . p'.' , ' - ' -..-



Table A.32: Loadm/storem execution frequendes, Parn 1.Wo
ST SYS bodi

testAetivaionRotarn
insawcuons 97.21% 2.79% 100%
loadms per insmucnon 0.00% 5.19% 0.14% lo
loedus W/ 8 fogs 0.00% 100.00% 100.00%'
uma loadm regs 0 8

poer mscin .0 .9 0.14%
suomms WIS a fgs 0.00%* 100.00% 100.00%f
mne=nszoem legs 0 8 8

res~tes~ranizer
jasmxcuons 41.06% 58.94% 100%
loadms per iustmacton 0.00% 0.62% 0.36%
loedins WIL atogs 0.00% 100.00% 100.00%
mean loadm fgs 0 8 8
somm per ismicdon 0.74% 0.65% 0.69%:
swran w/l5 togs 0.00% 0.13% 0.07%
swran w/ 6 mpg 0.00% 0.00% 0.00%
stoxms w/ 7 tog 100.00% 5.06% 46.89%
Storm W/ 8 rug 0.00% 94.81% 53.04%
Moan sloreM togs 7 7.95 7.53

ftsic ompiler
instwtions 33.42% 66.58% 100%
loadms per insaiacaon 0.00% 0.67% 0.45%
Icadms w/ 7 togs 0.00% 17.70% 17.70%
) cod=i w/S togs 0.00% 82.30% 82.30%
mean load. togs 0 7.82 7.82
storms per insuuction 0.75% 0.65% 0.69%
suoms w/ 4 togs 0.05% 0.00% 0.02%
sorem Wi 5 tgs 0.85% 0.12% 0.39% i
swom w/ 6 togs 2.72% 0.00% 1.00%
swrems w/7 ngs 96.38% 15.54% 45.21%
storemWI 8 togs 0.00% 84.33% 53.38%
mean storem togs 6.95 7.84 7.52

A %.

riIf



182

Table A.32: Loadm/storem execution frequencies, Part 2. i
ST SYS both

teaDecompiler
instrucons 32.19% 67.81% 100%
loadms per instucon 0.00% 0.35% 0.24 i %
Icadms w/ 8 rug 0.00% 100.00% 100.00%

s!rm per instction 0.73% 0.51% 0.58%
soram w/ 4 tess 0.62% 0.00% 0.25%
storem w/5 ngs 0.00% 0.00% 0.00%
storem w/ 6 rags 0.62% 0.00% 0.2% ,"-i. "
stmm w/ 7 regs 98.76% 31.02% 58.35%.-.-

surems w/8 mgs 0.00% 68.98% 41.15%
mean storem rugs 6.98 7.69 7.40

tesrPrinrDefininon
instuctions 38.01% 61.99% 100%
lodms per insruction 0.00% 0.06% 0.04% .
loedms w/ 8 rugs 0.00% 100.00% 100.00%,
mean lodm regs 0 8.00 8.00
storems per instruction 0.00% 0.14% 0.09% , .
storem sw 5 rgs 0.00% 2.13% 2.13% '-.

swrems w/ 6 rugs 0.00% 0.009 0.00% .
saorms w/ 7 rs .% 55.32% 5532% -. .

storms w/ 8 rugs 0.00% 42.55% 42.55%
mean sorem sS 0 7.38 7.38

taurPrintHierarchy /4
inuion 26.25% 73.75% 100% ,. -... '
lodmas per insruction 0.00% 0.27% 0.20% .

loadms w/ 7 regs 0.00% 14.37% 14.37%
loadms w/ 8 rags 0.00% 85.63% 85.63%
mean loadm regs 0 7.86 7.86
suorems per instuction 0.24% 0.43% 0.38%
stomms wl 5 rugs 0.00% 4.53% 3.79%
smres w/ 6 res 0.00% 0.00% 0.00%
samums w/7 rgs 100.00% 41.51% 51.10%
swoems wI 8 rugs 0.00% 53.96% 45.11%
mean storem tugs 7 7.45 7.38

7.

, .. %

".,.*'..

,: o'%

,. :..'

'eb %. " ' ,*,,' 'el'*e% '%lee,%.°•% %8 • % q %q,.. %.% ., .vl P %"%+" *-'"+ %' € ," It * e""*- .., '" ,+ . % *" ' + u ,e%' *% +'." "% .. ""5%' "." . ',. . %4' , +.-* +,I "".



.Iriu'LJU~rauJuP.d "4V -A -. 711-'" w V" V7 VA 1.4 k~j -v. v~ -p I- A . -- I w I

183

Table A.32: Loadndstorem execution frequencies, Part 3.
ST SYS both

avg of macros
instructions 34.19% 65.81% 100%
ioadms per instruction 0% 0.39% 0.26%
Ioadms w/ 7 rogs 0% 6.41% 6.41%
loadns w/ 8 rags 0% 93.59% 9359%
umn loedm regs 0 7.94 7.94

stomms per instruction 0.49% 0.48% 0.49%
stomms wl 4 egs 0.13% 0% 0.05%
stomins w/$ mp 0.17% 1.38% ! 28%
starems w/ 6 regs 0.67% 0% 0.25%
stomems w/ 7 regs 79.03% 29.69% 51.37%
storems wI 8 rgs 0% 68.93% 47.05%
mean storem r gs 5.59 7.66 7.44

'% f

J- .

S...

4 .e 
. *

°-4j

I..l

.-1

~,4.

J...



* j. ...

Table A.33: Time cost of omitting loadm & storem.
(All cos in percens.)

benchmmk ST SYS bodh
resrAcnyationRengrn

cycles 95.91% 4.09% 100%
loadm cost/all cycles 0% 18.23% 0.75%
stomm cost/all cycles 0% 18.23% 0.75%
total cost 0% 36.47% 1.49%

ini lass .anizer r .. "

cycles 42.56% 57.44% 100%
Ioadm cost 0% 3.11% 1.79%
storem cost 2.99% 3.26% 3.14%
total cost 2.99% 6.37% 4.93%

twsompikr __

cycles 34.07% 65.93% 100% A'
loadm cost 0% 3.15% 2.08%
stonm cost 3.01% 3.08% 3.06%
total cost 3.01% 6.24% 5.14%

tesrDecompiler
cycles 32.38% 67.62% 100% -

loadm cost 0% 1.71% 1.15%
stowm cost 2.98% 2.37% 2.57%
total cost 2.98% 4.07% 3.72%

testPrirfnition
cycles 38.09% 61.91% 100%
Ioadm cost 0% 0.30% 0.19%-._
stomm cost 0% 0.65% 0.40%
total cost 0% 0.96% 0.9%

SeaPrintHierarchy

cycles 25.90W% 74.10% 100%
lodm cost 0% 1.31% 0.97%.-..
storem cost 1.02% 1.96% 1.72%

total cost 1.02% 3.28% 2.69%
macro tOvg . , ,.'

cycles 34.60% 65.40% 100%
loadm cost 0% 1.92% 1.24%
stoqem cost 2% 2.26% 2.18%
total cost 2% 4.18% 3.41%

Table A34: Raw data for static analysis of store multiple,
descnripon count
cost for stomm 7363 words
tot SOAR image size 1500 kB
mlaive statc cost 1.96%

%

.k,,,,.,, ,..,,k.. ..+ .,.,.,.,,...,. .. .,...,. - - :. ..,;./:,. + ,:,... .. ..,.. :....,...., • ......... ..,.;,, ...-,, ,. ,..,..-.,..• -,_-...,,,..,...-...

rI.. z ,4 i ,• -. -w ,w ,+* ' • ,+ , - , , , '. ,r * T ,p- % * " , % * . • - '



VVL_% VW•fl- r "" .4 %- P . .r P.' S -- V At -%A W, X_ S X

185

A4 Perfornance of JInline Caching

Fit, we measured the cost of SOAR's in-line cache. In other words, if no procedure

lookups were needed, how much faster could SOAR run? To evaluate SOAR's in-line

cache,:we counted the occurrences of the cache probe conditional trap instruction. That gave

_I us the number of probes. Thm, since the prologue takes five cycles, we can easily get the

probe time. For the misses, we added two components: the miss trap handler time, obtained

by multiplying the number of misses (trap instruction traps) by the tap handler path length,

and the lookup time, obtained directly from an execution profile. Table A.35 sumans

these data, which show that in-line caching takes a lot of time; 23% of SOAR's time is spent

esting the cache and handling misses. Without any caching at all, the probe time would

decrease to eo, but the mistime would increase by a factor of 1/3.53% n2. In other words,

what takes 100 seconds with in-line caching would take 100-10.88+12.46x28=438 seconds. .-.

SOAR would be four times slower with no cache at all.

Next, we compared the 23% cost for the in-line cache with other caching schemes.

One of these was the hash table cache found in interpretive Smalitak-80 systems. The other '" -

scheme was an in-line indirect cache. Each call would jump through a per-process area with

p. each process's cache etries. Table A.36 shows the code sequences needed for these two
.'-,.,%types of cache. The hath table cubhe is the most expensive scheme, requiring 23 cycles for a ,,-'

cache probe. SO)AR's in-lie cache requires a prologue of only S cycles. The indirect

scheme adds a cycle for the indirect call and one for an indirect load in the prologue for a

tota of 7. %'

Assuming that the cache miss cost is independent of die caching scheme. we can use

the cache probe frequency data to calculate the costs of these caching schemes (Table A.37).

The bottom line in the table gives the average speed of the various schemes. SOAR would

run only 75% as fast as it does now with a conventional hash table cache. In other words,

the work that requires 100 cycles would take 133 with a conventional cache.

5-ta%
,,5%.

S
.. . . . .. . .. . . . . . . . .. . . . . . .. .'ee a



186

Table A.35: Inline cache performance evaluation, Part 1:.
description ST system both

tms4c o ,va, onRe-rn
instructions 97.21% 2.79% 100%
cycles 95.91% 4.09% 100%
probes per inst 9.47% 0.01% 9.20%
probes pr cycle 7.06% 0.01% 6.77%
loadc traps per probe , 0% 0% 0%

missprpoe0% 0% 0%
P probe insts per last 28.40% 0.03% 27.61%

oadc trapH insts per inst 0% 0-0% 0-0%
probe & u-apH insts per inst 28.40% 0.03-0.03% 27.61-27.61%

probe cycles per cycle 35.32% 0.03% 33.87%"
loadc trapH cycles per cycle I 0% 0-0% 0-0%--.
miss trapH cycles per cycle 0% 0% 0%
probe & trapH cycles per cycle 35.32% 0.03-0.03% 33.87-33.87%

otal miss timne 0%
total cache dne 33.87-33.87%

, sesrClassOrganizer
instructions 41.06% 58.94% 100%
cycles 42.56% 57.44% 100%
probes per inst 7.24% 0.05% 3.00%
robes per cycle 4.90% 0.04% 2.10%

loodc naps per probe 25.39% 0-0% 25.15-25.15%"
misses per probe 0.96% 0% 0.95%
probe insts per inst 21.73% 0.15% 9.01%loadc trapH t eris 5.52% 04)% 2.27-2.27% ,-
probe & trapH insts per inst 27.24% 0.15-0.15% 11.27-11.27% '-

probe cycles per cycle 24.48% 0.18% 10.52%1 ',, ..

loadc trapH cycles per cycle 8.70% 0-0% 3.70-3.70%
miss 1apH cycles per cycle 0.14% 0% 0.06%
probe& trapH cycles per cycle 33.18% 0.18-0.18% 14.22-14.22%
total miss time 2.66%
total cache tine 16.88-16.88% ,

S% ...

-r 7,- *

. I. _ * -.

: :]



*•* . - .- . - J - - ' - - -- - ; LS : o . 71 .-wiW~

'p.

187

Table A.35: Inline cache performance evaluation, Part 2. .-:

descri ST system bothtesf ompiler

intTn 33.42% 66.58% 100__
cycles J 4.07.% 65.93%____
probes per inst 7.29% 0.18% 2.55%
probes per cycle 4.% 0.12% 1.7%
loadc tapspesperobe i0 15.41% 0-1.94% 14.70-14.79%
misses per proee ! 4.81% 0% 4.59%
probe insts per inst 21.87% 0.53% 7.66%,-'•
loadc trapH inst per lust ' 3.37% 0-0.01% 1.13-1.13% /-?.

roe& tmpH lasts pEr lust :2.24% 0.53-0-54% 8.79-8.80% ''

probe cycles per cycle ',24.43% 0.61% 8.73% ?..

loadc IrmpH cycles per cycle 5.27% 0-0.02% 1.801.81 %
mis np cyles per cycle 0.71% 02%,.-

probe & napH cycles per cycle 29.70% 0.61-0.63% 10.52-10.53%
total Mh ime 15.14%_.___.

d_ _ cche UM 25.66-25.67%
wsrDecompiler

insmumcons 32.19% 67.81% 100%
cycles 32.38% 67.62% 100%
probes per inst I 7.20% 0.24% 2.48%
probes per cycle 4.91% 0.16% 1.70%
loadcapsperprobe 17.06% 0-0.19% 15.95-15.96%
misses per probe t 7.00% 0% 6.54%
probe insts per inst 21.59% 0.72% 7.44%
loadc trapH inss per mst 3.68% 0-0.00% 1.19-1.19%
probe & trapHl insts per inst 25.28% 0.72-0.72% 8.62-8.62%
probe cycles per cycle 24.53% 0.82% 8.50%..
loadc trapH cycles per cycle 5.86% 0-0.00% 1.90-1.90%
miss trmpH cycles per cycle 1.03% 0% 0.33%
probe & trapH cycles per cycle 30.39% 0.82-0.82% 10.40-10.40%
total miss time 24.03% .

totul cache time 34.43-34.43%

t,7.

.N.

1.7, 5.-

..-
:::

'V SN)

.4..'.

'- ..'

-, ,



188

Table A.35: Inline cacbe performance evaluation, Part 3.

description ST system both
restPrimiDefinition

instuctions ,. 38.01% 61.99% 100% , . ,
cycles 38.09% 61.91% 100%
pro per i7st 1' 7.98% 0.04% 3.06%
probes per cycle 5.83% 0.03% 2.24%
loadc trps per probe 1.03% 0-0% 1.02-1.02% . "
misses per probe 0.73% 0% 0.72%
probe inss per is, 23.95% 0.12% 9.18%
ioad trapH insts per inst 1 0.25% 0-0% 0.09-0.09%
probe & trapH insts per inst 24.20% 0.12-0.12% 9.27-9.27%
probecycles per cycle 29.17% 0.15% 11.21% -
loadc trupH cycles per cycle Ii 0.42% 0-0% 0.16-0.16%
miss trapH cycles per cycle 1i 0.13% 0% 0.05%
probe & utapH cycles per cycle !1 29.59% 0.15-0.15% 11.37-11.37%
total miss t'me __ _1.95%

total cache time __ _ 13.31-13.31%
tesrPrintHierarchv ".___-_.__"

instructions 26.25% 73.75% 100%
cycles 25.90% 74.10% 100%
probes per inst 7.62% 0.16% 2.12%
probes per cycle 5.44% 0.11% 1.49%
loadc traps per probe 4.47% 0-0% 4.22-4.22% ....

misses per probe 5.13% 0% 4.84%
probe insts per inst 22.86% 0.48% 6.36%
loadc trapH insts per inst 1.02% 0-0% 0.27-0.27%
probe & trapH insts per inst 23.88% 0.48-0.48% 6.62-6.62%
probe cycles per cycle 27.20% 0.56% 7.46%
Ioadc trapH cycles per cycle 1.70% 0-0% 0.44-0.44%
miss trapH cycles per cycle 0.84% 0% 0.22%
probe & trapH cycles per cycle 28.90% 0.56-0.56% 7.90-7.90%
total miss time 18.52%
total cache time 26.42-26.42%

V

*.
,.'. %.

,.q .

=" " ," ," ' ," " J -, P , ." ,r ." - ." . . . ." .- ~ . ." ." ,p .- . - -- .-~ .- .- o- .- .- .. . .- .t . " -". - .D= . 5 4 " . - . " . . '



189

* Table A.35: Inline cache performance evaluation, Part 4.
description 1: ST system both

average of macro-benchmarbk

instructions 34.19% 65.81% 100.00%
cycles 34.60% 65.40% 100%
probes per inst i 7.47% 0.13% 2.64%
probes per cycle 5.19% 0.09% 1.86%
loadc taps per probe 12.67% 0.00-0.43% 12.21-12.23%
misses per probe 3.73% 0.00% 3.53%
probe insts per inst 22.40% 0.40% 7.93%
Ioadc trapH insts per inst 2.77% 0.00% 0.99%
probe & trapH insts per inst 25.17% 0.40% 8.91-8.92%
probe cycles per cycle 25.96% 0.46% 9.28%
loadc trapH cycles per cycle 1 4.39% 0.00% 1.60%
probe & trapH cycles per cycle 30.35% 0.46-0.47% 10.88%"total miss time 12.46% ...
total cache time 23.34%

I.V' I..

4P

-A , I...,
'."
.5"

•.-5 "-;

.5i:

5.% . .'

.4J'

-". ".-

"'. ""5 " " " " " " " " " " " " " "" % , " ,, % " " , r " " " ' " " " " " " ' " " " " " " ', . . . '" . " . . : , ' .. " " . " ' . " '

"# . ". . .. , " ", ",."..".." . ." . . .,-' ... ." - . . . . . ... " . • • -



190

I.,VI. Table A.36: Code sequences for various caches
Hh-table Cache

ION&c (rl4)class~fset, r6%
%load 0 r5; sd I.

%odpcRe1(mask), r3%
%and r3, A, 14%
%sla z4, 14%
%dsa M4, 4%
%load pcRel(bue). r3%
%add r3, r4,1f4%
%Ioad (14)cacb.Class, r3% 4f
%trap3 ne r3, r4%
%load (14)cacheSeL, r3%
%trap3 ne r3, r4%
%load (14)cacheTargeL r3%
%Mt r3. 0%

VI. Time cost 23 cycles
Indirect inline Cache

<indirect call>
loadc (r14)classOtfset r6%
%load (rlS)0. 15%
%load (rS)rCacheBase. 15; uses global OR mapping
%tuap3 ne r5,r6%

Time cost 7 cycles + I cycle for indirect call
SOAR inli~ne Cache

loadCI (r14)classOffse, Y6%
%load (rl5)0, 15%

%tmp3 e r5, r6%

I. Time costS5 cycles

I %.

NV-



-7.7 M. . W; IF, F-Y 79 - . -W

191

Table A.37: Relative Performance of various caching schemes.
(SOAR - 0aster is better.) _

no hash indirect SOAR er tme
cache table inline cache resolution

StesActivationRemm 151.23% 45.06% 83.04% 100% 151.23% e.

testClassOrganizer 28.13% 72.53% 91.86% 100% 120.23%
I.testCompiler 25.05% 76.10% 93.03% 100% 134.11%

testDecompiler 23.35% 76.57% 93.28% 100% 151.74%
testPrintDefinition 28.58% 71.26% 91.67% 100% 115.30%
testPrintHierarchy 22.14% 78.82% 94.19% 100% 135.51%
avenge 25.45% 75.06% 92.81% 100% 131.38% " *:

.'%."

Next we examine the space impact of these caching strategies. Table A.38 presents the

raw data we have collected from the compiler. The total space taken by SOAR's in-line

caching scheme is the sum of the number of extra words needed to hold the last class for the

sends (measured by the number of cache slots), and the space consumed by the method pro-

logues. The number of prologues is the same as the number of cache probes. Table A.39
.4

illustrates this prologue. Table A.40 below shows the amounts of overhead at the call site

and at the method prologue for the various caching schemes. Finally, we can combine this

data to show the impact that each scheme would have (Table A.41). Thus, the hash table

cache would save 1.24% of the image space

Table A.38: Raw data for static analysis of caching.
call sites 22025
cache probes 4654
image size 1500 kB I

Table A.39: Inline cache prologue. -me
<selector> needed to handle misses .
%loadc (r14)0, rO get receiver's class
%load (rl5)0. rl get last class for send
%wapl ne rO, rl verify cache

total length 4 words

L'-k

.4
--'- °

S ,,',2 ..- j.._. ? ... ' ., -. €. . . - ; --- :* . *



( 192

Table A.40: Space overhead for the various caching schemes.
call site overhead prologue overhead

nolookups 0 0
in-lie cache 1 4
indirect in-line cache34
hash able 1 0

Table A.41: Net space impact of caching schemes.
no lookups 2.71 savings
in-line cache 0
indirect in-line cache 2.94% cost
hash table 1.24% savings

. A.4.. How Fast Does SOAR Shuffle? .1%;-.

SOAR is a nimble processor;, jumps and branches only take one cycle. To understand % -

the significance of this feature, we can examine the frequency of jumps and calls (Table

A.42). As the table shows, jumps and calls ame popular instructions; onue insruction in 10 is

a jump and one in 17 is a call. Given the frequency data we can add the ext cycle SOAR

would require without a fast shuffle (Table A.43). These data show that SOAR would be N

S1 %b slower without the fast shuffle mechanism.

A.4.6. Evaluation of Parallel Register Initialization

If the return insauction could write nil into six registers at once, each routine would

have to write nil into its temporary variable registers sequennally. Using [Blag3a] page 139.

Benchmark column, one can compute an average of 1.19 arguments and temporaries per

call. excluding the receiver. Since the average number of arguments per call is 0.88

(MeC83] (pp 185, Fig. 10.3) we assume that the average number of temporaries per call is

between zero and one. This gives the number of extra cycles required per call. To measure .-

the number of calls requiring nilling, we used the number of return instructions that changed

the window. This way, we also included returns from interrupts. Table A.44 presents our

measurement of the extra time that serial instead of parallel nilling would take. assuming no

'.

Vv'C4kc J *~~-- ' .'



193

Table A.42: Frequency of jump and call instructions.
ST s$sm both

resrActivarioDRetarn

insmuctions 97.21% 2.79% 100%
jumps 5.03% 10.50% 5.18%
calls 9.62% 0.08% 9.35%
jumps & calls 14.65% 10.58% 14.53%

teutCAuOrganizei
insocions 41.06% 58.94% 100%
jumps 15.10% 8.96% 11.48%
calls 14.51% 1.14% 6.63%
jumps& calls 29.62% 10.10% 18.11%

toseCompilr

instructons 33.42% 66.58% 100%
jumps 14.25% 8.95% 10.72%
calls 13.74% 1.89% 5.85%

& calls 27.99% 10.84% 16.57%
tesDecontpiler .

instuctions 32.19% 67.81% 100%
jumps 12.91% 8.66% 10.03%
calls 13.23% 1.88%, 5.54%
jumps & calls 26.14% 10.55% 15.57%

re:?Pina:Dmiio
insuucions 38.01% 61.99% 100% .
jumps 12.84% 5.51% 8.3096
calls 13.50, 1.89% 6.30%
jumps & calls 26.34% 7.40% 14.60%

tesrPrinliirarchy

insaucuons 26.25% 73.75% 100%
s12.% 7.85% 9.04%

calls 13.73% 1.23% 4.51%
jumps & calls 26.14% 9.07% 13.55%

average of macros
insomcuons 34.19% 65.81% 100%
jumps 13.50% 7.99% 9.91%
calls 13.74% 1.61% 5 .77%
jumps & calls 27.25% 9.59% 15.68%

'

4,4.

'I.
a'. 4

% • . ) " "% ". - %, " ". ". % ". . "% % % % %. % . "b "% % . % % % '% "I % , " " ". %. % % ," , I ". ". . % ,' • .." ," r ... ,r .." € . ,r r , . . ., € . ,, .. e . ,w e W" €, , ,e ,.. .% .@ , ,. . ,... . .. . .. , 'a'..



194

Table A.43: Cost of omitting fast shuffle.
ST sterm both V.

mstAcUvamionRetwrn
cycles 95.91% 4.09% 100%
jump cost 3.75% 5.27% 3.82%
call cost 7.17% 0.04% 6.88%
lowi cost 10.93% 5.31% 10.70%

'a ssOrganizer
cycles 42.56% 57.44% 100%
jump cost 10.21% 6.44% 8.05%
call cost 9.81% 0.82% 4.65%
total cost 20.02% 7.26% 12.69%:

rescompikr
cycles 34.07% 65.93% 100%
jump cost 9.55% 6.18% 7.32%
call cost 9.21% 1.30% 4.00%"
total cost 18.76% 7.48% 11.32%

tecrDecompiler
cycles 32.38% 67.62% 100%

Mjnp cost 8.80% 5.96% 6.88%
call cost 9.02% 1.30% 3.80%
total cost 17.82% 7.25% 10.67%

testaPrintDefinition

cycles 38.09% 61.91% 100%
jump cost 9.38% 4.04% 6.07%
call cost 9.87% 1.38% 4.61%
total cost 19.25% 5.42% 10.69%

testfrintHierarck-
cycles 25.9096 74.109b 1009b _-

jump cost 8.86% 5.50% 6.37%
call cost 9.80% 0.86% 3.18%
lowa cost 18.66% 6.36% 9.55%

average of rwcro benchparks

call cost 9.54% 1.13% 4.05%'.:;
jump cost 9.36% 5.62% 6.94% .

total cost 18.90% 6.75% 10.98%

changes in compiler stratgy. The data show that SOAR would run 4% slower without

parallel nilling.

To analyze the impact of parallel hilling on the size of the compiled image. we instru-

menied our compiler (Table A.45). To do this, we kept a running total of the number of

temporary variables that would be kept in registers. Assuming that each variable would

....J



195

Table A.44: Evaluation of parallel nilling, Part 1.
ST system both

testAcivationR etu'n
instuctions 97.21% 2.79% 100%
cycles 95.91% 4.09% 100%
avg. regs containing pointers per mtw* n.a. 2 na.
avg tmp van 0-1 n.a. n.a.
tw'ua per inst 9.62% 0.06% 9.35%

wtws*a 'per cycle 7.17% 0.03% 6.88%
cost of nillin 0%-7.18% 0.06% 0.00%-6..8%

* tesi sOrganaizer
instructions 41.06% 58.94% 100%
cycles 42.56% 57.44% 100%
avg. rgs containing pointers per rtw n.a. 1.60 n.a.
avg emp van 0-1 na. La.
retw'sa per inst 9.78% 4.62% 6.74%
mtw'sa per cycle 6.61% 3.32% 4.72%
cost of nillin 0%-6.62% 5.32% 3.05%-S.82%tesocompiler ."".

instructions 33.42% 66.58% 100%
cycles 34.07% 65.93% 100% """

avg. regs containing pointers per mtw* n. 1.78 n.a.
avg tmp van 01 na. n.a.
retw'soa per inst 9.64% 3.82% 5.77%
mtw 'ms per cycle 6.46% 2.64% 3.94%
cost of nilling 0%-6.46% 4.70% 3.10%-5.30%

tesrbec;mi-Uer. ,x
instructions 32.19, 67.81% 100%

cycles 32.38% 67.62% 100%
avg. regs containing pointers per retw* na. 1.84 n.a.
avg temp van 0-1 na. n.a.
ritw' sq per inst 8.76% 3.62% 5.27%
retw' sa per cycle 5.97% 2.49% 3.62%
cost of nillinst 0%-5.97% 4.59% 3.10%-5.04%

tesrPrintDefimnition
instructions 38.01% 61.99% 100%
cycles 38.09% 61.91% 100%
avg. regs containing pointers per mtw* n.a. 1.53 n.a.
avg tmp van 0-1 n.a. n.a.

trew'sqa per inst 8.19% 5.52% 6.53%
ntw'sqa per cycle 5.98% 4.04% 4.78%
cost of nilling 0%-5.99% 6.20% 3.84%-6.12%

S%..



196

Table A.44: Evaluation of parallel nilling, Part 2. ".

ST systwm both
testPrintHierarch.

instructions 26.25% 73.75% 100%
cycles 25.90% 74.10% 100%
avg. regs containing pointers per retw* n.a. 2.26 na.
avg temp vans 0-1 n.. na. .
itw's~a per inst 8.68% 2.79% 4.33%
retw's, per cycle 6.20% 1.95% 3.05%
cost of nhillng 0%-6.20% 4.42% 3.28%-4.89%

average of macro-benchmarks
instructions 34.19% 65.81% 100.00%
cycles 34.60% 65.40% 100.00%
avg. regs containing pointers per retw* n.. 1.80 a."
avg temp van 0-1 na. na.
retw's4a per inst 9.01% 4.07% 5.73% ..
retw'sa per cycle 6.24% 2.89% 4.02%
cost of nillins 0.00%-6.25% 5.05% 3.27%-5.44%

require an additional instruction to nill it, we can then compute the space overhead nilling

would require without hardware support. The table shows that our image would be 1.29%

larger if SOAR lacked this feature.

A.4.7. Return Options * 
"

.

The inclusion of three optional operations in SOAR's return instuction add some com- -

plexity to the architecture. Which of the possible combinations are really used? Table A.46

shows our dynamic frequency data. As expected, the normal return, remw was used nearly

three quarters of the time. Although seven out of the eight possible versions were actually

used, only ret, red, rerw, and remw are essential, the rest could be omitted. The other 10%

Table A.: Stark analysis of parallel nillin..

illing cost for temporary variables 2348
nilling cost for spill initialization 2472
total SOAR image size 1500 kB
relative static cost to nil temps 0.63%
relative static cost to nil spill obj. 0.66%
total static cost for serial nilling 1.29% 2.: /

Smcluda all nturn mamicitom dhst chmse msmwr windows: mtw. re retnw. mtwiw - ,-Bed or vatlaed.

• % .



197

Table A.46: DI amic frequencg of return optioms, Part 1.
testAcrivadionRerurn

returns per instruction 9.78%
remurns per cycle 7.20%

%reti's per return 1.48%
%rern's per return 1.48%
%rmw's per return 0.01%
mmw's per return 95.54%
%retw's per reurn 1.48%

tesr las$Or ganier..

returns per instruction 8.03%
returns per cycle 6.46%

%ret's per return 4.72%
%red's per return 12.59%
%ram's per return 5.90%
rem's per reurn 0.03%
%rtw's per return 2.26%
ew's per return 0.48%
Jmw's per return 11.92%
retaw's per ream 58.20%
%redw's per return 3.90%

testCompiler 8.8
m m per ins ru tion 8.18%

returns per cycle 5.59%

%ret's per return 3.91%
%red's per retun 11.78%
%ren's per return 9.24%
rem's per reurn 0.13% ...

%retw's per urn 1.58%
mw's per return 0.53% -," ,
%remw's per return 16.07%
mrmw's per remum 52.16%
%reaw's per return 4.48%
%retinw's per return 0.12%

,.

5%

4 .
--

." o*
",:-, .. :, -:. ,., ., . ',..z..., % . . . ... . . ,....,....... . ,. .. ,,, . ,



198

Table A.46: Dhnamic frequency of return options, Part 2.
retaDecompiler

returns per insmction 7.38% ,V
renrns per cycle 5.06%

%ret's per renrn 4.73%
%ri's per mum 11.37%
%retn's per reurn 8.77%
rem's per reum 0.36%
%retw's per return 0.55%
retw's per return 0.02%
%remw's per rturn 13.33%
remtw's per return 57.61%
%retiw's par mn 3.26%

testPrintDefmition
rurns per insuction 7.84%
reuns per cycle 5.74%

%re's per return 8.45%
%red's per return 5.87%
%emn's per return 1.90%
%rmtw's per return 4.74% .-

%remw's per return 11.48%
retw's per return 67.08%
%rew's ver return 0.47% ..

testPrintHierarchy
returns per instucton 5.68%
rnuns per cycle 4.00%

%rt's per return 5.29%
%rted's per remturn 7.18%
%rerm's per return 7.76%
ren's per eturn 0.17%
%retw's per return 1.02%
%reuw's per retum 12.84% -7
reUIW's per return 62.64%
%retw's per reun 3.04%
%retinw's per turn 0.06%

V.5 ,P ,-.



199

STable A.46: Dnamic frequency of return options, Part 3. U4

qvera#e o macro-benchmarks
returns per instruction 7.42%
returns per cycle 5.37%

%rat's per return 5.42% "
%red's per rem 9.76%
%rew's per reurn 6.71%
rem's per mum 0.14%
Sretw's per rtn 2.03%
retw's per mt 0.21%wo
credw's per return 3.03%esthn "

Mremw's per reur 13.13%.
remw's per re9' 59.54%%reinw's per return 0.04% :

of the returns would just require an extra cycle or two to synthesize. Since a retur only -,".

occurs about oe in twenty cycles, the effect would be to add a cycle or two every 200

ZIcycles. This would degrade performance les than 1%. ..

AS. Storage Management :.

This secton contains an evaluation of SOAR's features to help manage storage.

A.$.1. Evaluation of the Generation Scavenge Tag Checking Hardware

The first su-p in understanding the performance impact of eliminatng tagged store

instructions from SOAR is an execution frequency measurement (Table A.47). At 0.36%,

tagged stores are quite rare.
'.4

Table A.47: Dynamic frequency of tagged store Instructions.

(Given as percenMae of total instructions executed.)
-. insrucnon split tagged store frequency "9.'

benchmark ST system ST system, both
sestPopStofelnstVr 81.28% 18.72% 28.47% 0% 23.14% :

tesiclassOrganizer 41.06% 58.94% 0.51% 0.08% 0.26%
tesiCompiler 33.42% 66.58% 1.20% 0.71% 0.87% .9
testDecompiler 32.19% 67.81% 0.84% 0.35% 0.51%-&N
testPrintDefinition 38.01% 61.99% 0.18% 0.00% 0.07%
testPrindHierarchy 26.25% 73.75% 0.27% 0.05% 0.11%
avg macros 34.19% 65.81% 0.6% 0.24% 0.36%

P

, - .

• I %



200

The second step is to examine the cost of doing the check in software (Table A.48): simulat-

ing this feamre takes four cycles. The number of tagged stores executed per cycle can then

be multiplied by the simulation cost (Table A.49). The result of this calculation is that the

wont-case macro-benchmark would run only 3% slower without this feature.

Next we examine the space cost of eliminating the generation tag checking hardware.

Table A-50 gives the static frequency of these store insaction. As expected from the rarity

of execution, tagged stores account for very little of the code, or about 2%.

Finally, we multiply the 3 word space penalty by the static frequency (Table A.51) to

compute that the Smalltalk-0 image would grow by only 3% if tagged stores were removed

from SOAR.

Table A.48: Writearound for tagged stores.
%store (a)i, b .
%and a. Oxf c< 28 .--
%and b, Oxf c< 28, th
%trp It ta, tb; tap if a younger
%trap eq ia. Oxf; tap if a is a context
dynamic cost: 4 cycles
static cost 4 words

Table A.49: Time cost of omitting GS Tag Trap Store.
(% of total cycles) ,.,

all cycles store cost cycles
benchmark ST system 1 ST system both
'testpopStlnstVar 83.37% 16.63% 70.59% 0% 58.85%

ast~lanDqganiuar 42.56% 57.44% 1.74% 0.33% 0.93%
c testCompiler 34.07% 65.93% 3.99% 2.43% 2.96%

testDecompiler 32.38% 67.62% 2.87% 1.24% 1.76%
testPrintDefiition 38.09% 61.91% 0.66% 0% 0.25% '""
testPrintHierurchy 25.90% 74.10% 0.93% 0.18% 0.38%
macro avg 34.6% 65.4% 2.04% 0.84% 1.26%-

Table A.30: Static frequencv of tagged stores. ,

count portion portion of

of stofes of code code+data
3578 2.12% 0.95%

6
h - '

i ,.'',.,';.. '' '.,_.;.':3,. .'V .:.; . , ' ' : '. \ , ' , . : '  , ;" :: ',',', ',' ..-..... " :"."-":.'
,,.. .,,..,.F,,._,.,j...,,., ,..j,, ,.-,...= ,. +" ' J '. + - .' , +' -' ' ' '- = .'+'+. ;.+,.. , = , :' ,. , , ,



201

Table A.S1: Space cost of omitting taged stores.
count portion portion of
Of stores of code code+data
3578 6.16% 2.85%

A.52 Frequency of GS traps

One last interesting measurement is the cost of the Generation Scavenging map. Table

A.52 gives the frequency of store traps. These data indicate that only 3.9% of the tagged

stores trap. Since the path length for the store map handler is 40 cycles (including the code

to remember the object), the time spent handling these traps is
,4..

40 C-'/CS x3.9 Sr" xO.36% E ledSr$ linsfruct'on =0.37%.
rap aggetore insmacnon 1.Scycle S

The time for store traps is insignificant.
4.

A.5.3. Evaluating the Pointer to Register Support

The pointer-to-register circuitry includes a comparator and a significant amount of con-
'..,

aol complexity [PenS5b]. How well could SOAR get along without it? There are two cases

to analyze: ..

thiscontext "/

In Smalltalk-80, a routine can request a pointer to its activation record by accessing the

Table A.52: Dynamic frequency of tagged store GS traps.
(Given as Percentage Of ST, system both tagged stores executed.)
benchmark ST system both
testPopStorenstVar 0% 0% 0%
testClassOrganizer 0.30% 0% 0.24%
testCompiler 0.24% 4.83% '2.71%
testDecompiler 0% 0% 0% '..
testPrintDefinition 2.63% 0% 2.63%
testPrntHierarchy 21.05% 0% 13.79%

avg macros 4.84% 0.9.7% 3.87% _J

N'. .'*..' d' " f ~ .-.. * . .*.* **-*--.** -.. .'- %* % °'



202

pseudo-variable thisContext. In this case. the compiler must give out an illegal

(unmapped) address. When the program vies to use this address, the page fault
-.. . (

handler can then ensure the activation record resides in memory and not on-chip, then

complete the operation. Fortunately. this case mostly occurs in the debugger, where a

speed penalty is more acceptable.

blockCopy - ,

A Smalltalk-80 block permits execution of a piece of code in one procedure to be con- r.W,

trolled by another procedure. We implement this feature with a distinct actvaton

record that contains a pointer to the defining activation record. Thus, the code in a

blck can access the data in its home activation record with loads and stores. If we "

eliminate pointer-to-registe" circuitry from SOAR, we merely need to flush a

block's home activation record out to memory when entering the block. This may

involve flushing exta register windows until we reach the desired one. On the other

hand, the desired window may already be in memory. We ran the benchmarks and

simulated the cost of this scheme. Every time control entered a block, we counted the

number of windows that would have to be flushed. The first column of Table A.53

4 ~give the number of block invocations, and the second gives the average number of U -

windows flushed per invocation. We have assumed an IS cycle cost to flush a win- - -

dow; nine cycles to save it, and another nine to restore iL This esnt ase is probably

low since it omits the cost of handling the extra raps. The third column. which is the N.

cycles spent flushing windows per invocation, is just 18 times the second. The next o.-..

two columns give the frequency of block invocations per cycle in compiled Smalltalk

code, and the cost of simulating pointer-to-register per cycle in compiled Smalltalk

code. Finally, the last two columns give the same data. but relative to the total time. ,' "' "

not just the time executing compiled code. These data show that SOAR would be only

3% slower without the pointer-to-register feature.

II+ I



203

Table A.53: Time cost of eliminating pointer-to-register hardware.
benchmark block windows/ cycles/ values/ cost/ values/ cost

invoks invok invok ST cycle ST cycle cycle cycle
classOrganizer 4023 0.92 16.6 0.29% 4.89% 0.13% 2.08%
compiler 906 0.50 9.0 0.24% 2.20% 0.08% 0.75% -
decompiler 2785 1.40 25.2 0.30% 7.49% 0.10% 2.43%
printDefinition 149 2.02 36.4 0.53% 19.2% 0.20% 7.31%
printHierarchy 152 1.30 23.4 0.50% 11.68% 0.13% 3.02%
avenge 1603 1.23 22.1 0.37% 9.09% 0.13% 3.12%

A.A Implementation

We have examined two implementation-related issues: eliminating register forwarding

and the relative proportions of data- and instruction-fetches.

A.6.1. Register Forwarding

How important is the register forwarding in SOAR's datapath? To get a crude idea, we

measured how often our simulated instructions used a forwarded value and assessed a

penalty of one cycle. Table A.54 shows the results of this measurement. Forwarding is

Table A.S4: Time cost for eliminating forwarding.
tesrClassOrgani:er

cycles 42.56% 57.44% 100%
extra time for pipeline bubbles 9.72% 14.02% 12.19%

tesCompiir
cycles 34.07% 65.93% 100%
extra time for pipeline bubbles 10.26% 14.67% 13.17%

restDecompiler
cycles 32.38% 67.62% 100%
extra time for pipeline bubbles 10.66% 16.88% 14.86%

tesrPrintDefinition
cycles 38.09% 61.91% 100%
extra time for pipeline bubbles 9.81% 21.31% 16.93%

PN resrPrinrHierarchv
cycles 25.90% 74.10% 100%
extra time for pipeline bubbles 10.39% 21.22% 18.41%

average of macro-benchmarks
cycles 34.60% 65.40% 100.00%
extra time for pipelir.2 bubbles 10.17% 17.62% 15.11%

.-................. ,



204

important; SOAR would run I% sower without it. it is possible though, that thee might .0

be a way to approach the speed of automatic forwarding without the complexity of detecting

forwarding at runtime. Two interestng approaches are special instruction scheduling or .

access to the forwarded value in a special register [Pen85b]. (See Section 2.5.3: MIPS.)

A..2. Memory Accesses

In this section. we examine the proportion of memory references for instructons and

data. There are three different types of SOAR memory refrences:

1-fetches

These are normal instruction fetches. derived from the simulator's insmction count.

D-fetsches

These are data references, computed from the number of load, store, loadc, loadm. and

storem insuuctions. (We weighted each loadm and storem by the number of words

accessed.)

I-flushes

I-flushes represent instructions fetched but not executed. Examples include skipped

instructions and insmctions after returns. These are the cycles left over when the

above two are submtacted from the total number of cycles.

Table A.55 presents our analysis. The rarity of I-flushes. 9%, supports our suspicion that --" "r

keeping SOAR's pipeline short keeps its utilization high.

IA

%J *. -

.4.' .*I



..w. T wr-v .-. , - .u ..-ZWU- WTW.E'-EUW,I7IwJ 1 .' . , -vwv] . N- . .,- ,. +.- rr - .4. - . *, -.- ..... .-.. . :

205

Table A.$: Instruction vs. Data Fetches, Part 1.
ST system both

rnet3plusil
all inmtruction references 65.14* 34.86% 100%
all data references 32.08% 67.92% i00% U
all data + instructon references 61.15% 38.85% 100%

I-fetches per cycle 90.73% 71-56% 82.98% .,

-flushes per cycle 3.15% 9.33% 5.65%
D-fetches per cycle 6.12% 19.11% 11.37%1.

testActivationRetu '.

all instruction references 97.21% 2.79% 100%
all data references 88.17% 11.83% 100%
all data + instructon references 95.65% 4.35% 100%

O' i

1-fetches per cycle 74.61% 50.20% 73.61%
1-flushes per cycle 11.26% 5.32% 11.02%
D-fetches per cycle 14.13% 44.48% 15.37%

ast~assOrganizer
all instruction references 41.06% 58.94% 100%
all data rfenmces 40.60% 59.40% 100%
all data + instruction references 40.97% 59.03% 100% .

1-fetches per cycle 79.74% 80.80% 80.37%
I-flushes per cycle 1.44% 0%* 0.46%
D-feches per cycle 18.82% 19.43% 19.18%

tustCompiler
all instruction references 33.42% 66.58% 100% '
all darn references 33.88% 66.12% 100%•
all dar + insuuction references 33.53% 66.47% 100%

1-fetches per cycle 67.02% 68.98% 68.31%
I-flushes per cycle 13.31% 11.19% 11.91%
D-fetches per cycle 19.67% 19.83% 19.78% j

. '.

X%

.4++

NN

0 Or amlabor coutwd a value of .0.24* for this enuy. clear evidoe that our imuuction coutu we imewct.•

• ...,

-a "

__"_ ',



206

10 Table ASS: Instruction VL Data Fetches, Part 2. "
ST ssvm both

stDecompiler
all instruction references 32.19% 67.81% 100%
all data references 33.27% 66.73% 100%
all data + instmction references 32.42% 67.58% 100%

S-.*.

i-fetches per cycle 68.17% 68.76% 68.57%
I-flushes per cycle 12.57% 12.75% 12.69%
D-fetches per cycle 19.26% 18.50% 18.74% ,.

testPrintlefinition
all instruction references 38.01% 61.99% 100%
all darn references 36.82% 63.18% 100%
all darn + instruction references 37.78% 62.22% 100%

I-fetches per cycle 73.08% 73.33% 73.23%
I-flushes per cycle 10.32% 9.14% 9.59%
D-fetches per cycle 16.61% 17.53% 17.18%

testPrintHierarchy
all instruction references 26.25% 73.75% 100%
all data references 23.28% 76.72% 100%
all data + insuuction references 25.62% 74.38% 100%

I-fetches per cycle 71.39% 70.11% 70.44%
;-flushes per cycle 11.66% 10.36% 10.70%
D-feches per cycle 16.95% 19.53% 18.86%

average of macro-benchmarks % %
all instruction references 34.19% 65.81% 100.00%
all data references 33.57% 66.43% 100.00%
all data + instruction references 34 .06% 65.94% 100.00%

1-fetches per cycle 71.88% 72.40% 72.18%
I-flushes per cycle 9.86% 8.64% 9.07%
D-fesches per cycle 18.26% 18.96% 18.75%

77,

-,-.

5%%

S.' " . . . . . ." S .'
"

,',' , ;...:. ... +'.- ..,,, .+.+,'..', . ,/ .-,"..,, ,-,..,"....*, ."..., .',55,"%,, ,.,*,,, ..,.., ," ,



207

Appendix B

Raw SOAR Data

B.1. Introduction

This appendix contains the raw data we gathered and used for the calculations in

Appendix A. The first section contains instuction mixes for the second iteration of several

benchmarks. These were run in an imase that was modified to eliminate almost all

occurrmces of the become primitive, as outlined in Chapter 5. The second section contains

execution time profiles for the same runs. To guide the reader through this section, we have

. reprinted pan of the table of contents in Table B.I.

Table B.1: Table of contents for Appendix B .................. .. ....... 207
Table B.2: msplus4 Micro-Benchmark Instuction Mix ......... ............ 209
Table B.3: tstPopStorelnuanceVariable Micro-Benchmark Imtucon Mix

.............. -. ..................... .. . ............. . 2D9
Table B.4: est.ActivationReturn Micro-Bencuark Insuction Mix ................ 210
Table B.5: testClassOraizer Macro-Benchmark Instuction Mix ..................... 211

-" Table B.6: testCompiler Macro-Benchmark Insu tion Mix ............... 214
Table B.7: testDecompiler Macro-Benchmark Inmction Mix ........................... 217
Table B.8: testPzintDefition Macro-Benchmark lnstmction Mix ..................... 220
Table B.9: testPrintHieruchy Macro-Benchmark Instruction Mix ................... 223
Table B.10. test3plus4 Micro-Benchmark Execution Time Profile ....................... 226
Table B 11: testActivationReturn Micro-Benchmark Execution Time Profile

............................................................................................................. 22622
Table B. 12: estClassOrramzer Macro-Benchmark Execution Time Profile ......... 226
Table B. 13: testCompiier Macro-Benchmark Execution Time Profile .................. 227
Table B. 14: WstDecompiler Macro-Benchmark Execution Time Profile .............. 228
Table 8 15: testPrintDefinion Macro-Benchmark Execution Time Profile .......... 229
Table B.16: testPnntHierarchy Macro-Benchmark Execution Time Profile .......... 230

Table.: Table of contents for Appendix B.

-"4



208

.2. Instruction Mix Data

This section contains our insrucdon mix data. A few definitions ae n order.

* seps: the number of instucions executed.

0 cycles: the number of SOAR cycles executed. T1his is a measure of execution time.

SST: the code that was written in Smalltalk and compiled.

* sysem: the runtime system support primitives writen in assembler language.

" Ccodes: simulator operations, mostly print statements used for trocing.

, 77: trap instruction taps.

" 2/7: tag traps.

- GS: Generation Scavenging traps.

. WO: register window overflow trps.

* WU: register window underflow traps. 7T: tag traps.

" loadm/urorem [1-8): the number of loadm or stomm insructions that accessed a given

number of registers.

S rerw's: return instructions of any type that changed windows.

S nonmMil8.14: At every mrt*w, the simulator counts the number of registers between rA

4 and r14 that contain something other than nil. This figure is the total for the run.

" int8-14: the accumulated total of registers between r8 and r14 that contain integers

when a mtw is executed.

* taggedlmm: the immediate value could not have been represented without SOAR's

tagged immediate feature.

* untaggedlmm: the immediate value could have been represented without SOAR's I ',

tagged immediate feature.

4'4
k -,-' P ,e , , ' ' " " --" - " -- " "• "' " ", " , " ", "%" ;... %' " " ," -' % "t" '."".,



,-. V-.

209

condlmps: the number of times a jump immediately followed a skip.

Table B.2: test3plus4 Micro-Benchmark Instruction Mix.
ST system both

Steps 4642
Cycles 3332 2261 3593 i
Ccodes 3 0 3

Snop 1 0 1
%Mt 0 100 100:

m 0 .

%Muiw 100 3 103uMw 1 102 103,
%Mskip 0 ! 15 115 ' "-

UIpl 0 100 100
%vrap$ 101 1 102 .....

%store 0 20 20
%lJoad 103 411 514
Ioadc 101 1 102
%and 0 4 4:
%or 0 3 3
%add 1406 429 1835
add 1000 0 1000
%sub 0 107 107
€ .xUrat 011%insert 0 3 3-

0 "uac.0,. I i

%jump 102 107 209
.mp 2 4 6. ..

%Cail 0 4 4.
call 102 103 205 ..

Table B.3: testPopStorelnstanceVariable Mkro-Benchmark Instruction Mix. .
ST system both

Steps 8642
Cycles 11332 2261 13593
Ccodes 3 0 3
%nop 1 0 1
%ru 0 100 100
%rem 1 0 1
%Mmw 100 3 103
MImw 1 102 103 VAN
Eskip 0 115 115
rap) 0 100 100

%u'p3 101 1 102 -. ,_
%store 0 20 20
store 2000 0 2000

%load 2103 411 2514
Ioadc 101 1 102 -.
%and 0 4 4
A'" _

"i . - V



-'- O. v il -w 1r-fldjJr -' .

210

Table B.3: testPopStorelnstanceVariable Micro-Benchmark Instruction Mix.,
ST sysum both

%or 0 3 3 I.

%add 2406 429 2835
%sub 0 107 107

%insert 0 3 3

%jump 102 107 209
jump 2 4 6 !
%6cull 0 4 4
call 102 103 205.

Table B.4: testActivatiouReturn Micro-Benchmark Instruction Mix.
ST system both

Steps 356067
Cycles 463922 19772 483694

WO 515 0 515
WU 513 2 515
C odes 3 0 3 ..-,,

%nop 1 515 516
%ret 0 1 1

1 515 516
*Iainw 2 3 5
nemw 33280 5 33285
% .- 0 515 515++ -. o S.. S.
%skip 0 1049 1049
skip 32767 0 32767
Irpl 0 1 1
%trap2 16383 0 16383
%tap3 32769 1 32770
% 0 20 20
-smm 0 515 515
%load 32771 534 33305
loadc 32769 1 32770

'loadm 0 515 515
%and 0 4 4

% %9 0 3 3 %
%add 81926 2607 84533
%sub 0 1552 1552
sub 32766 0 32766
%exuact 0 1 1
%insen 0 3 3

%jump 1033 523 1556 4 "
jump 16385 519 16904
%all 0 4 4

,,call 33285 4 33289

~ . .*~. * . . .. ___ _ _ _ _ _ _ __ _ _ _ _*,. .. . * . ' . -



-~. ao

211

Table B.4: testActivationReturn Micro-Benchmark Instruction Mix.
ST systm both

WO O? 515 0 515
WU mww 513 2 515
loadm 8 0 515 515

stoem 8 0 515 515
re*w's 33284 6 33290
nonNilS-14 99341 25 99366
imt8-14 33285 13 33298
eq %skip 0 528 528
eq skip 32767 0 32767
ne %skip 0 518 5I8
ne trapl 0 1 1

nuap3 32769 1 32770
Itu/inO %skip 0 1 1
geu/outO %urap2 16383 0 16383
lev%skip 0 1 1
gir %skip 0 1 1
untaggedimm %ret 0 1 1
unUedlmm %rfe 1 515 516
untaggedlmm %remw 1 3 4
untaggedlmm remw 32768 3 32771
utaggedlmm %reti 0 515 515
untaggedlmm %wskip 0 518 518

untaggedlmm skip 32767 0 32767
unwggedlmm %load 32770 12 32782
untaggedlmm Ioadc 32769 1 32770
untagedlmm %loadm 0 515 515
untaggedlmm %and 0 2 2 ~_
untagedlmm %add 7 2081 2088 %
untaggedhom,%sub 0 1551 1551
untaUedlmm sub 32766 0 32766
untagedlmm extract 0 1 1
unmagedlmm %insen 0 3 3
taggedlmm %skip 0 1 1
aggedlm % aup2 16383 0 16383
taggedlmn %load 1 522 523
oggedim. %and 0 1 1
maggedlmfn %or 0 2 2N,
taggedlmm %add 0 519 519

Table B$: testClassOrganizer Macro-Benchmark Instruction Mix.
ST systm both

Sops 1953882
Cycles 1156735 1638604 2795339

Ccodes 1482 0 1482
"T 15025 0 15025 i-.. "-.
WO 6088 949 7037 ,,-,.

% S ".
," -N. €-

. . . . ," o "%"



212

Table I33: testClassOrganizer Macro-Benchmark Instruction Mix.
ST sYsum both

WU 4692 2345 7037:

_NOp 1 9657 9858k
%Mt $ &,5l6 8521
%lmm 0 4073 40731,..-

mw 0 870 870
%rmm 2051 8599 10650
13 0 47 47.
9,remw 7429 14080 21509 i
iemuw 19660 85371 105031
%re0 22728 22728
stw 0 7037 7037-.

%mudnw 0 9
%skip 11154 136263 147417

kip 18607 11737 30344
%aupl 0 12466 12466'

5 umpi 0 31372 31372-
%vap2 13507 412 13919
96tap3 57631 653 58284
%trap4 1318 12 1330
%sor 9821 23075 32896
store 4697 1177 5874
%storem 5320 7483 12803
%ioad 108290 160134 268424
load 0 1704 17044
omdc 57631 1326 58957

%loadm 0 7037 7037
fsr 0 43097 43097
%xor 0 12044 12044
%iand 5 36562 36567,.'"
%[or 1318 9919 11237 "
%ladd 21!8244 229098 447342 .
add 10076 12235 22311

%s 0 18023 18023
slI 0 5756 5756

%sub 1318 41742 43060
sub 2357 21503 23860
qxtact 0 44618 44618
%insert 0 12721 12721

%jump 85710 34846 120556
jump 31288 62388 93676
16cal1 0 8578 8578
call 114110 6343 120453
TT skip 3893 0 3893
7T loadc 11132 0 11132 .
WOO? 6088 949 7037

. • f.,W w 0 489 489

fZfO ~* .. *



213

Table 3.$: testClassOrganizer Macro-Benchmark Instruction Mix.
ST sysem both.

WU remw 4692 1856 6548 .
TI tmp 0 9 9.
Ti tp3 641 0 641 L"
G o w 1, 0 1,,
GS store 14 0 14 '

kmdm 8 0 7037 7037

storemS 0 11 ii1
somm 7 5320 435 5755
strmi 8 0 7037 7037"
mtaw's 75521 55960 131481 "'
nouNil-14 192227 224667 416894
intS-14 68182 131169 199351 .-..
always %skip 3404 3 3407
it %skip 0 8671 8671 -
it skip 276 5123 5399.
ge %skip 0 8526 8526
ge skip 14 144 158'
ge tmapI 0 262 262,
eq %skip 7179 36799 43978
eq skip 6013 442 6455
eq %api 0 190 190
eq uapi 0 1461 1461
eq Imap4 1318 12 1330
ne %skip 571 58466 59037 I

fe %trap1 0 7612 7612
ne tapl 0 3982 3982
ne %arp 3  57631 653 58284
e %skip 0 17063 17063

i skip 7952 242 8194 ,. -

t %skip 0 101 101
t skip 459 5786 6245

It %uapl 0 136 136
St uapl 0 131 131-
1wminO %skip 0 747 747
geu/out0 %skip 0 3928 3928
geu/outO %utapl 0 4528 4528
gSeout0 trapl 0 25536 25536
gewoutO %ap2 13507 412 13919
in %skip 0 1168 1168
gi %skip 0 791 791
untagedlmm %ret 0 4623 4623
untaggedlmm %retw 0 39 39
unmgdlmm retw 0 522 522
untaggdlmm %remn 2051 8599 10650
untaggedlmm rem 0 47 47
untagedlmm %remw 6180 13938 20118
untaggedlmm remw 16217 83657 99874
untagedlmm %reti 0 22728 22728 d.

I . ..s 'S



214

Table B.5: testClassOrganizer Macro-Benchmark Instruction Mix.
ST0 system both .

untaggedlmm %reiw 0 7037 7037
untaggedlmm %retinw 0 9 9;
untggedmm %skip 0 26794 26794

umlael mskip 4916 87 1003

untaggedlnun %trap 1 0 14 144
zasedl loadl 1730 90070 1919
uwggedlmm load 0 1702 17044
untagedlmm Ioac 57631 1326 58957

umggedlmm Sioadm 0 7037 7037
utggedlnm% Xor 0 3015 3015 "

uggedlmm %and 0 29187 29137
untaggedlmm %or 0 1 2998
untaggedlmmIadd 20011 152781 172792
untaggdlnun add 9405 22 9427 '
untagedlmm %sub 1318 35799 37117 .. ,
untaggjedhynm sub 669 16489 17158..-.

uargedl sitexrgact 0 26380 26310
untaredng %insert 0 2199 2199

ogged skis 7p 387 21610 25467
moedlmm %trap 9 0 428 4528
taggecdlmm %Strap2 13507 412 13919 -

..

TaUedmm t trap4 1318 12 1330 .4.
tggedlmm %load 3560 42117 47677 ',u

staedLain %and 5 2130 2135 .
tanedlmmn %tor 1318 1680 2998 3,-

gedlm %acid 95 18331 27286bo--
srl barrel shifter savings 0 12672 12612
forwarding cost 111047 250701 361748
two-tone savings 209716 308810 518526
odlumps 9821 72666 82487

Table B.6: testCompiler Macro-Benchmark Instruction Mix.I ''

ST system both "

iSup 743753

Cycles 370941 717817 108878
Codes 1557 0 1557
T"1 3372 is 3390 ..
WO 2088 641 2729 '
WU, 1889 840 2729 "
TI 872 75 947 ql
OS 1 ] 168 179"-

%nop 1 13688 13689
qi 10 2368 2378
%retw 0 960 960 h,"

mtw 0 320 320
9brem 1212 4410 5622
rem 0 81 81

__%

'-7. *
• ."-". . .. . . . . .- ' .. ' ..-.. a. - . . ,. . . ".-.-.- ."'"" - "" -"- ' -- " " - , . ' ''"""""" , '".. * • , .. , .... ,-. ., -. i ..- ,, _ i , .-- . ., ' - - . ;". _ ; : _



215
I k

Table B.6: testCompiler Macro-Benchmark Instruction Mix.
ST system both

%remw 2422 7362 9784
Mmw 8528 23221 31749
%reti 0 7170 7170
%,edw 0 2729 2729
%retnw 0 75 75
%skip 3737 77074 80811
skip 4810 4342 9152

I %trapl 0 2763 2763
trap I 0 7701 7701
%trap2 4735 259 4994
Itrap3 18122 878 19000

I %trap4 450 19 469
%store 1880 16253 18133
store 2973 3476 6449
%storem 1876 3236 5112
% ioad 36937 65008 101945
load 0 5087 5087
ioadc 18121 1235 19356 .:' ,
%loadm 0 3316 3316
%Sri 0 9388 9388
%sra 0 50 50
Isra 0 24 24
%xor 0 1304 1304
%and 11 13067 13078
and 30 4 34
Ior 451 4818 5269
%add 66485 106045 172530
add 3094 4385 7479

%sll 0 5159 5159
Sll 0 1406 1406

%sub 450 20291 20741
sub 1124 5830 6954

%cxuact 0 12979 12979
%insert 0 3697 3697

J..

%jump 26002 24280 50282
jump 9420 20049 29469
%call 0 6801 6801
call 34157 2548 36705 . .

'r skip 579 1 580
T loadc 2793 17 2810

WOO? 2088 641 2729
WU retw 0 146 146 .
WU remw 1889 694 2583
TImpl 0 75 75 ,
TI ap3 872 0 872
aS remw 4 0 4
GS store 7 168 175.
Ioadm 7 0 587 587

ii.'.



216

* Table B.6: testCompiler Macro-Benchmark Instruction Mix.
ST system both

loadm 8 0 2729 2729

Istorm4 1 0 1
storem 5 16 4 20
s torem 6 51 0 51
sorem 7 1808 503 2311
storem 8 0 2729 2729
M*w's 23962 18922 42884
nonNilS-14 62890 80599 143489
i int8-14 23225 46848 70073

always %skip 944 1 945

it %skip 0 11216 11216
It skip 304 1101 1405
ge %skip 0 2640 2640
ge skip 187 102 289
ge trapl 0 110 110
eq %skip 2715 17376 20091
eq skip 1528 1285 2813
eq %trapl 0 190 190
eq trapl 0 358 358
eq %trap4 450 19 469
ne %skip 78 35782 35860
ne skip 2 254 256 "
ne %trap 1 0 1556 1556
- taapl 0 906 906

ne %trap3 18122 878 19000
I e %skip 0 5343 533
le skip 1469 76 1545
gt %skip 0 68 68
St skip 741 1523 2264

St %trapl 0 65 65
1g tap 0 0 55 55
Itu/inO %skip 0 905 905
geu/outO %skip 0 1818 1818
geu/outO %trap I 0 952 952
geU/onutO mpl 0 6261 6261
geu/outO %uap2 4735 259 4994
ICu %skip 0 1077 1077
gt %skip 0 848 848
outl inpl 0 11 11
untaggedlmm %ret 0 1788 1788
untaggedlmm %retw 0 360 360
untaggedlmrn retw 0 194 194
untaUedlmm %rei 1212 4410 5622
untagedlmm rein 0 81 81
untaggedlmm %remw 2116 7324 9440
unmtaggedlmm reww 6945 22565 29510
untaggedlmm %reti 0 7170 7170
umaggedlmm %retiw 0 2729 2729 "'-

+- ." .% . . + 'S." %



217

Table B.6: testCompiler Macro-Benchmark Instruction Mix.
ST system both .,.,,

Sntaggedlmm %retnw 0 75 75
untaggedlmm %skip 0 9993 9993
untaggedimm skip 1658 485 2143 ,

i untaggedlmm %trap] 0 74 74
untaggedlmm %load 33942 47159 81101
untaggedlmm load 0 5087 5087
untagedlmm oadc 18121 1235 19356
untaggedlmm %loadm 0 3316 3316
untaggedlmm %xor 0 447 447
untaggedlmm %and 0 6924 6924
untaggedlmm and 17 4 21
untaggedlmm %or 1 147 148
untaggedlmm %add 8059 70090 78149
untaggedlwm add 2189 120 2309
untaggedlmm %sub 450 17456 17906
uataggedlmm sub 542 4359 4901
untaggedlmm %exuact 0 10833 10833
umtaggedlrmn %insert 0 2423 2423
raggedlmm %skip 1058 17170 18228 _
wggedlmm %trapl 0 952 952
taggedlmm %utap 2  4735 259 4994
taggedlmm %utap4 450 19 469 " .

mggedlmm %load 2995 11425 14420
mggedlmm %and 11 2306 2317 - -

taggedImm %or 450 1995 2445
taggedImm %add 3662 8732 12394 -\

s11 barrel shifter savings 0 3 3 -.
aI barrel shifter savings 0 1900 1900
arm barrel shifter savings 0 24 24
forwarding cost 38049 105324 143373
two-tone savings 68706 91028 159734

I condJumps 3416 28601 32017

Table B.7: testDecompiler Macro-Benchmark Instruction Mix. ,.,
ST system both

Steps 1983995
Cycles 936933 1956663 2893596 0, W,
Ccodes 6016 0 6016
17 8641 6 8647
WO 3225 1548 4773
WU 3433 1340 4773
TI 3217 6 3223
%nop 1 6185 6186
%ret 31 6890 6921
%retw 0 798 798
mrw 0 25 25
%rein 4049 8783 12832 -". -
rein 0 534 534

I...

v % % 'm '% % " % ,'% " , ' "%'. " % ,'' %'" " " % " .'.'' ', % " % " - % % • " %'" %'% -- % -'- -'* " % ''% .. i. '



218

Table B.7: tustDecompiler Macro-Benchmark Instruction Mix.
ST sysm both

%re~w 3975 15526 19501
emw 21194 63099 84293

%red 0 16637 16637
Srebw 0 4773 4773
%retinw 0 6 6
%skip 4601 236206 240807
skip 15999 8356 24355
%mapl 0 8682 8682

Wpl 0 21010 21010
%up2 12417 788 13205
%u'ap3 45968 3212 49180
%vap4 1088 82 1170

,swuo 7926 50609 58535
swm 5375 4826 10201
%storm 4680 6919 11599
%load 88555 196228 284783
load 0 14998 14998
kodc& 45962 3836 49798

.loadm 0 4773 4773
%sri 0 17159 17159
ma 0 2120 2120

a %xor 0 6329 6329
%and 31 36239 36270
-and 300 0 500
%or 1088 10335 11423
%add 186538 309908 496446
add 11775 13398 25173

%sli 0 7956 7956
sRI 0 1306 1306

%sub 1088 46940 48028
sub 2890 15654 18544

%exuact 0 37296 37296
%iner 0 15013 15013

%jump 60263 64066 124329
-22167 52476 74643

%call 0 17876 17876 ,:
call 84494 7471 91965 .0

/TIr skip 798 0 798 ,
1 Ioadc 7843 6 7849

WO 0? 3225 1548 4773
WU mfw 0 1 1
WU remw 3433 1339 4772
TI trapl1 0 6 6 %

trap3 3217 0 3217
Ioadm 8 0 4773 4773

storm 4 29 0 29
stomm 6 29 0 29

a.'.%'

'.9. VC



219 gZ_

Table B.7: testDecompiler Macro.Benchmark Instruction Mix.
ST sysWm both

stomm 7 4622 2146 6768
storm, 8 0 4773 4773 .

retow's 55944 48679 104623
nonNil8-14 155632 215034 370666
iatS-14 56499 125311 181810
always %skip 1726 61 1787
t %skip 0 44547 44547
it skip 797 1852 2649
ge %skip 0 4500 4500
ge skip 1095 135 1230
ge trap1 0 168 168
eq %skip 2683 40869 43552 .___
eq skip 5332 734 6066
eq %trapl 0 1022 1022
eq trap1 0 921 921
eq %tra 1088 82 1170
De %skip 192 123615 123807
ne skip 0 88 88
ne %tpl 0 5499 5499
ne napl 0 2875 2875
ne %usp3 45968 3212 49180
le %skip 0 10193 10193
le skip 6112 142 6254
Stskip 1865 5405 7270
pt%vapi 0 115 115
t tapl 0 84 84

l/inO %skip 0 2961 2961
8eu/outO %skip 0 1015 1015
gewoutO %uapl 0 2046 2046
geu/ouO tap1 0 16384 16384
geu/out0 %rap2 12417 788 13205
.eu%skip 0 5107 5107
gtu %skip 0 3338 3338
outl tapI 0 578 578
untaggedlmm ;%ret 0 6092 6092 1 , O.e

untaggedlmm retw 0 24 24 ...
untaggedlmm %rem 4049 8783 12832
untaggedlmm rem 0 534 534
untaggedlmm %remaw 3521 15496 19017
untaggedlmm remw 18215 61790 80005
untanedlmm %reti 0 16637 16637
utaggedlmm %retiw 0 4773 4773
urnggedlum %zuanw 0 6 6
uzi..gdlmm %skip 0 28251 28251
wtuaggedlmm skip 6564 0 6564
untaUedlmm %tapl 0 379 379
untaggedlmm %load 82930 153764 236694
unt&Uedlmm load 0 14998 14998

. untagedlmm loadc 45962 3836 49798
',

S! *% % S , . - ~.9 .



~. WVA. . WW -.~~~~ J~~ .~ ~~.~.'1E.**

220

Table B.7: testDecompiler Macro-Benchmark Instruction Mix.
ST system both

untaggedlmm %ioadm 0 4773 4773
untaUedlmm Sxor 0 2070 2070
unmggedlmm %and 0 14346 14346
unmgpdlmm and 267 0 267
unuoedlmOr 0 31 31
untaggedimm %add 24298 199945 224243
untggedlmm add 8025 2309 10334
untage %smm %ub 1088 40446 41534
umggedlmm sub 1370 12298 13668
n. uamggedlrnm %exuact 0 30917 30917

Untaggedlmm %inse 0 8883 8883
taggedlmm %skip 1333 61155 62488
taggedimm %tapl 0 2046 2046
taggedlnmmu trap2 12417 788 13205

• taggedlnun %trap4 1088 82 1170
taggedlmm %lioad 5625 28232 33857
taggedlmm %and 31 6249 6280
taggedlmm %or 1088 5019 6107
taUedlmm %add 7078 23687 30765
srl barrel shifter savings 0 4473 4473
forwarding cost 99921 330197 430118
two-tone savings 186209 233311 419520
condiumps 8268 62319 70587

Table B.8: testPrintDefnition Macro-Benchmark Instruction Mix.
ST system both

Steps 54310
Cycles 28249 45910 74159
Ccodes 77 0 77
Tr 216 0 216
WO 11 9 20
WU 13 7 20
i 12 0 12
GS 2 0 2
%nop 1 23 24
%ret 0 360 360
Sretw 0 202 202
%Mre 38 43 81
%remw 165 324 489

*0rew 368 2489 2857
.red 0 250 250"retw 0 20 20

%skip 284 3116 3400
skip 891 5 896
%tmpl 0 644 644 '
uapi 0 1238 1238
%trap2 282 2 284
%urap3 1648 14 1662

4



221

Table B8: testPrintDeflnltion Macro-Benchmark Instruction Mix.
ST sysem both

%stor 148 1066 1214
am 38 0 38
SIOIMM 0 47 47 :,.. :

*load 2857 5571 8428 %
load 0 866 866

1648 38 1686 i .
Slodm 0 20 20
Sal' 0 868 a" ,

%xor 0 621 621
%and 0 1238 1238

%or 0 292 292
%add 6277 6745 13022
add 469 460 929

%sll 0 199 199
%sub 0 726 726
sub 14 908 922

Sexwnct 0 2031 2031
%insmn 0 750 750 0

Sjump 1650 923 2573
jump 1000 932 1932
9call 0 362 362
call 2787 273 3060
T rskip 199 0 199
Tr loadc 17 0 17
WOO? 11 9 20
WU emw 13 7 20
TI rap3 12 0 12
GS imtw 1 0 1
GS store 1 0 1
loadm 8 0 20 20

stomU 5 0 1 1
storem 7 0 26 26 "-
storem 8 0 20 20
mow's 1690 1857 3547
nonNilg-14 4554 7923 12477
inr-14 1387 5077 6464
always Sskip I 1 0 11
It %skip 0 58 58
Se skip 0 4 4
Se nupJ 0 4 4
eq %skip 273 1379 1652
eq skip 17 0 17
eq %tap1 0 12 12
ne %skip 0 1107 1107
ne skip 0 1 1
ne %uP1 0 428 4281

%-_
.

d..;



Table B.8: testPrintDefinition Macro-Benchmark Instruction Mix.
ST syswm both

ne tpl 0 149 149
neulp3 1648 14 1662
le %skip 0 227 227
le skip 417 0 417
St %skip 0 1 1
gt skip 258 0 258
gt %awpl 0 2 2
gtn upl 0 2 2
Itd'O %skip 0 39 39
geuoutO %skip 0 199 199
geuiO %trap I 0 202 202
geuouto 0pl 0 1083 1083
geu/outO %trp2 282 2 284
leu %skip 0 64 64
Pu %sWip 0 42 42 ..'.
untaggedlmm %ret 0 161 161
untaggedlImm %retw 0 3 3
untaggedlmmn %rem 38 43 81
untaggedlmm %remw 160 324 484
unmtggedlmm remw 360 2482 2842
untggedlmm %red 0 250 250
untauggedlmm mtiw 0 20 20
untaggedm. %skip 0 992 992
untaggdlmm skip 26 0 26
urtNggedlmm run p 0 4 4
untaggedimm %load 2725 3667 6392 %
untaggedlmm load 0 866 866Iuntaggedlm. loadc 1648 38 1686
untaggedlm- %od. 0 20 20
untggedmm %xor 0 217 217
un.agpdlmm %and 0 910 910
untaggedlm. %add 329 4601 4930
untaggedlmm add 469 0 469
untaggedlmm %sub 0 693 693
untaggedlmm sub 8 679 687
unmgedl.. Uxezact 0 1423 1423
unmtggedlmm %insert 0 114 114
tUSedlmm %skip 7 531 538
tagged.mm %tuapi 0 202 202
tagpdlmm %raup2 282 2 284
tggedmi. %ioad 132 972 1104 ."_
tagged.mm %and 0 55 55

,. mgedmm %or 0 53 53
mggsedmn %add 412 193 605
Srlbsrrl shitm savings 0 434 434
forwarding cost 2770 9784 12554
two-toae savings s80 9344 15144 '
condium 299 1281 1580

*1'

:, ,. ..,-. _ . .. .,,, . .- - -.,, .. ., .-.. .-. .-,,, ,..,. .-.- ,- ,-...,) . -; ;.; -.,.-, .,- . .- .-- ,... :)."-,.."..-.- ,4

,,% ,' " ,",U . , ," - ,. , ," - - , - "-' - . ,r . . ,. # .. ,,



223

Table B.9: testPrlatHiera cb Macro-Benchmark Instruction Mix.
ST system both

Sups 82833
Cycles 30458 87127 117585
Ccodes 193 0 193
TT 86 0 86
WO 117 26 143
WU 81 62 143L1 85 3 ss
aS 24 0 24

1nop 1 169 170
%ret 0 249 249
%retw 0 48 48
% rm 109 256 365

em 0 8 8
%mremw 208 396 604
rmw 618 2329 2947
%reb 0 338 338
%rew 0 143 143
%reainw 0 3 3
%skip 261 8996 9257
skip 545 35 580, .'

%mapi 0 1148 1148
Iapl 0 1324 1324

* tmp2 303 6 309
%uap3 1657 98 1755
%tnl4 13 0 13
%s m 176 2595 2771

stmo 57 30 87
%stmm 52 265 317 .
%load 2908 10094 13002 ,

load 0 890 890
loadc 1657 117 1774
% ioadm 0 167 167
%srl 0 1308 1308
%zxor 0 1782 1782
%and 0 1955 1955
and 4 0 4

%or 13 643 656
9add 6770 12942 19712
add 452 155 607
%sli 0 22 22
sil 0 3 3
%sub 13 2218 2231
sub 50 513 53

O gxvact 0 2567 2567
96inmm' 0 17:34 17:34.

96jump 1870 2509 4379
jump 828 2284 3112
16c:all 0 547 547



224

Table 3.9: testPrintHierarebv Macro-Benchmark Instructiom Mix.
ST system both

call 2986 202 3188
T rsip 12 0 12
TT icedc 74 0 74
WO 0? 117 26 143
WU rmw 81 62 143
TmpI 0 3 3
M Tup3 85 0 85
GS remw 12 0 12
GS store 12 0 12
loadm 7 0 24 24
koadm 8 0 143 143

uosm 5 0 12 12
strem 7 52 110 162
storem 8 0 143 143
retw's 1888 1702 3590
nouNilS-14 5682 8475 14157
itS-14 1344 4622 5966
always %skip 45 0 45
It %skip 0 1362 1362
It skip 7 11 18
se %skip 0 9 9
ge skip 5 4 9
*e trap1 0 8 8
eq %skip 216 1552 1768
eq skip 51 4 55
eq uapI 0 24 24 - -

eq tmpl 0 4 4
eq %Iap4 13 0 13
n 9skip 0 5543 5543
ne skip 0 2 2
ne Wbupl 0 750 750
ne Uspl 0 152 152
ne %u-p3 1657 98 1755
le %skip 0 108 108
le skip 377 0 377
g%skip 0 12 12
St skip 93 14 107
S Itfapl 0 4 4
9t uapl 0 4 41
I-/inO %skip 0 108 1081
8eu/outO %skip 0 12 12
geu/outo fn-ap1 0 370 370
geu/outO trap1 0 1154 1154

enWoutO %Trap2 303 6 309
leu %skip 0 182 182
S tu %skip 0 108 108
outl UIpi 0 2 2
unaggedlmm *ret 0 237 237

dw :"A!,

11A ' . ... ,
CTUC~rit'b



225

Table B.9: testPrintHJerarcby Macro-Benchmark Instruction Mix. d%

ST Sstem both
unaggedlmnn Imtw 0 36 36
untagsedlmm %r 109 256 365

unagedm.mm0 88
unaggedlmm %nrmw 200 390 590
untggedmm rmw 545 273 2818

urardnmled 0 338 338
untaggedlmi Setiw 0 143 143
unmaggedlmm %minw 0 3 3
untaggedimm %skip 0 1983 1983
untagedlmm skip 81 0 81
untaggedlmm apl 0 8 8
untaggedImm %load 2504 7300 9804
untaggedlmm load 0 890 890
untagedlmoadc 1657 117 1774
untaggedlhm %loadm 0 167 167
unuggedImm %xor 0 370 370
untaggedlimm %and 0 887 887
untaggedInm %add 728 9243 9971

un~gdlm dd441 1 "42-" '

untaggednim %sub 13 2067 2080
unageimnsub 23 417 440

unoggedlmz %extact 0 891 891
untaggedlmm %insen 0 288 288
iaggedlmm %skip 35 1752 1787
uggedImm %tap1 0 370 370
tagged.mm %urap 2  303 6 309
tagged.mm trap4 13 0 13
taggedlmm %load 404 1882 2286
taggedlmm %and 0 241 241
taggedlmm %or 13 195 208 -
taggedmm %add 37 669 706
srl barrel shifter savings 0 647 647
forwarding cost 3166 18485 21651
two-woe savings 6621 8649 15270
condlumps 363 2385 2748

B.. Execution Profile Data

The data in this section were derived by modifying the simulator to sample its PC

every 100 cycles, and using an awk [AKWJ program to merge the samples with assembler's

symbol table. Instumenting the simulator instead of the SOAR program enables us to

profile the program without altering its behavior. All times listed in this appendix ae given

as a percentage of the total time. For an explanation of the primitive numbers, see the

*. •'.'.',.

• " " " . . . • • " " # /'• " ,"* .* * * . J *- . * J * *'. . ." ,. * ** ** *". .* .- o"* # • ," .



226

Smailmi-8O book by Goldberg and Robson IGoRS3J. The more obecure labels can only be J

understood by reading our code.

Table B.10: test3plus4 Micro-Benchmark Execution Time Profile.
57.1% Smolkalk
17.9% BCValuePrm2
16.1% start
7.1% Prim 81
1.8% BehavNew
0%6 other

TTable B.11: testActivatiouReturu Micro-Benchmark Execution Time Profile.t 9.9% Small=lk
2.2% Window~vedfowTrapH
1.8% WindowUndedfowTrapH

L0.19% other

Table 3.12: testClassOrganizer Macro-Benchmark Execution Time Profile.
41.3% Smalltalk

5.6% Window~verfiowTrapH
5.2% SIQuoPrm
4.8% SaingMd~nn
4.8% Prim 60
4.7% WSextPutPrm
4.2% WindowUnderfiowTrapH
3.2% SIMu1P~rm
2.5% SuingReplaceFromToWithStartingPrm
2.1% lookupMethodlnClass
2% Prim 62
1.9% SkipfagTrapH

~41.9% RSNexdrm
1.7% SISISIPrm
1.6% LoadcTagTrapH
1.6% BehavNew

.41.4% 3CVaIuePrm2
.0.9% SYS word fill

40.8% Skip~nTnae
0.8% SELThm~
0.7% SkipTagTrapS
0.7% Prim 61
0.7% Prim 110
0.6% SkipTagTrapH!done
0.5% blockCapy
0.4% lookup
0.4% Prim SI1
0.4% PSAt~adPnn A
0.3% blockAnowRetrq
0.3% PailPrm

1'r.z % %N

' ~ ~ c t, I 4- .



227

Table 5.12: £estClassOrganier Macro-Demchmark Execution Time Profile.
0.2% other
0.2% insmt!04!selbare
0.2* insert!03!sel!hsrc
0.2* ullocSpace
0.2* Prim 75S
0.1% metbodilodkCopy
0.1% cacheMissLookup
0.1% StrintAttPrm
0.1% SkipODalse
0.1% SVTrace
0.1* SflodPrm2
0.1% Prim-83
0.1* Prim 71
0.1* Prim- I1I

Table 5.13: lesiCompiler Macro-Benchmark Execution Tuvne Profile.
33.8* Smualmik

113.2% lookupMethodlnalass V
I5.5% Window~verfowTrapH
4.7% Prim 60

14.7% DehavNew
4% WindowUnderfiowTrapHI3* SIQOprm
2* WSNextPucdrm

1.7* SDulPrm

1.5* cPyi or62
1.1* allocmpac

~11*3 lockripy
0.9% Lsgoangrp
0.9% Pri e 89

0.1% Smn~lac~rml ~zhanngr

0.8% SkipTagTnapH
0.7* SkipOnTrue
0.5% gsStofeGSTrapH-.% Ssno
OA% other
0.4% SsAnObject
0.4% cacheMissLookup s

0.4* blockArrowReum
0.3% SkipTagTnapS
0.3* SILTPrm

L2Im 'I



228

Table 5.13: testCompiler Macro-Benchmark Execution Tinm. Profile.

0.2% PSrzmnd7 n
0.3% tm10
0.2% ehdocop

0.2% getorGSimpS

0.2%

r ~~0.1% Sd~nas
0.2% FPrI

0.1% grfvoj

02.1% Ssm mbelk

.1% allocrace
A .1% PrimSI83

.1% DCriu.Prm

0.9% Saiurm

02.1% SLoadciagkp
01.2% cachupetissookupa
07% Skiehae
0.8% Prim 61

0.7% Prim 70nt (
0.5% TSYSrd f l
0.3% othe61
2 .3% Skindowa dedoarp

2.1% S~uo-r



T T.. -7, 7 -1 W.- VV, " 19 N-- 9 P W-.16 -' V7.

229

Table 5.14: testDecompiler Macro-Benchmark Execution Time Profile. I
039b prim $I
0.2% vwthod~lockCopy
0.2% SvTraCe
0.2% SMLTPrm
0.2% SIEQPrm
0.2% prim I1I1
0.1% insw'!03!sel!here
0.1% .qNewNcwBecomne
0.1% SkipTagTrupS
0.1% SkipTagTrapH~done
0.1% SkipOnFalse
0.1% Prim 75
0.1% Ptim-74
0.1% Prim 73
0.1% Prim 68
0.1% Prim 110

0.1%. Faf.

ITable 5.15: testPrntDeantion Macro-Benchmark Execution Time Profile.

13.3% WSNextPutPrm
11.1% Prim 60
5.1% SuingAtPfm
4.9% StringRsplaccFromToWitbStawigPrm
4A4% SkipTqgTrpH
3.8% DhbavNew
3.5% Prim 62*J
2% DCValnePrm2
1.8% SkipTagTrapH!done
1.5% lookupMetbod~nClass
1.5% SkipT&STrpS
1.5% SYS wordfiW
1.3% SISISIP,. '

1.1% blockCopy 4.

0.8% prim SI1
0.7% insert!04!mlhe
0.7% allocSpsce
0.5% WindowUnderflowTrapH
0.5% SuingMPutPrm
0.4% lookup
OA% izae!03!sel!here
0.3% SkipOnTrue
0.3% Prim 70
0.1% =ft
0.1% SworeSTrapH
0.1%6 skipOnFalse
0.1% RetarvOSTrpS
0.1% Ptim 71

0-*' ddw

. 'p. .:



230

Tabl LIS tetl~rnt~finiionMacr-Benhmak Excuton Tme roffe.

Table 3.15: testPrint~eranitlo Macro-Benchmark Execution Time Profile.

17.7% WSNexPutPrm
16.6% lookupMediodlnClass a

10.4A% SningReplaceFromToWithStaningPrm
6% BehavNew
4.2% StringAtfnD
3.1% WindowOverflowTrapH
3% SYS word fill.2

2% WindowUnderflowTrapH
2% Puim 60

1.% CV&aluePrm2

1% blockCopy

0.% RecumGSTrapS
0.% Prim-6

0.6% Prim 81

OA Prim 71
0% Stant

0.3% alOCSPaCe
0.3% SD~ulPrm
012% SwreGSrapH A

0.2% SkipTal;TrapS
0.2% ReturnOSTrapH
0.2% Prim 70
0.2% Prim 110
0.2% 1 ondTgTmpH

0.1% SmngxlBzckupr

0.1% Ptrim 74ut~
0.1% PVrim 7
0.1% Prim 111

0.1% Faiw~m
0%6 other

% '


